

Revised: 30 March 1997

The Adobe PICA API Reference
Version 1.1 3/97

Adobe Plug-in Component Architecture
PICA

Header File Location
The header files described in this document are in the "PICA SP Headers" folder which is in the "AIPluginAPI" folder on the SDK.

Adobe Illustrator Software Development Kit

2

PICA API Reference Guide

Copyright © 1996-7 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commit-
ment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes
no responsibility or liability for any errors or inaccuracies that may appear in
this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such
license.

Adobe, Adobe Premiere, Adobe Photoshop, Adobe Illustrator, Adobe Type
Manager, ATM and PostScript are trademarks of Adobe Systems Incorporated
that may be registered in certain jurisdictions. Macintosh and Apple are
registered trademarks, and Mac OS is a trademark of Apple Computer, Inc.
Microsoft, Windows are registered trademarks of Microsoft Corporation. All
other products or name brands are trademarks of their respective holders.

Version History

Release 1 8/1/1996 Matt Foster

Release 1.1 3/6/1997 Matt Foster and Andrew Coven

PICA TOC

Chapter 0 - About This Document »6
Viewing and Printing This Document »6

Conventions . »6

Accessing the Suite . »6

Supporting Documents . »7

There are five companion documents to this reference as follows:»7

Chapter 1 - Intro »8
About the PICA Plug-in Manager »8

The Plug-in Model . »8

What is a Suite? . »9

Interface Files . »10

Some Design Goals . »11

Common Plug-in Interface. »12

Chapter 2 - Plug-ins »13
What Defines a Plug-in? . »13

PiPLs. »14

Plug-in Loading Order . »14

The Plug-in Entry Point . »14

Message Actions: Callers and Selectors »15

Handling Callers and Selectors »16

Message Data . »16

Using Suites and Callback Functions »18

Calling a Suite Function . »18

A Complete Example . »19

Platform Considerations . »19

Chapter 3- PiPLs »22
The Plug-in Propery List Resource »22

The PiPL Structure . »22

Properties . »22

Platform Dependencies . »23

Types. »24

General properties . »24

Code Descriptor Properties . »24

Export Properties . »26

PIIEListsDesc . »27

Dynamically Declared Properties »27

Working with PiPLs . »28

Chapter 4 - The Core »30
Internal Data Structures . »30

Suites and Data Structure Interfaces »32

List Management . »33
Adobe Illustrator Software Development Kit 3

PICA TOC

Error codes . »34

Chapter 5 - The SPAccess Suite »35
About the SPAccess Suite . »35

Accessing the Suite . »35

Calling Other Plug-ins . »35

SPAccess Information . »36

SPAccess Suite Functions. »37

Chapter 6 - The SPAdapters Suite »40
About the SPAdapters Suite . »40

Accessing the Suite . »40

Plug-in Adapters . »40

Adapter Messages . »41

Message Data . »42

SPAdapters Suite Functions . »45

Chapter 7 - The SPBasic Suite »48
About the SPBasic Suite . »48

Accessing the Suite . »48

What Is a Suite? . »50

Acquiring and Releasing Suites »50

Using a Suite Function . »50

SPBasic Suite Functions . »52

Chapter 8 - The SPBlocks Suite »54
About the SPBlocks Suite . »54

Accessing the Suite . »54

SPBlocks Suite Functions . »55

Chapter 9 - The SPCaches Suite »57
About the SPCaches Suite . »57

Accessing the Suite . »57

SPAdapters Suite Functions . »58

Chapter 10 - The SPFiles Suite »59
About the SPFiles Suite . »59

Accessing the Suite . »59

Platform File Specifications . »59

SPFiles Suite Functions . »60

Chapter 11 - The SPInterface Suite »62
About the SPInterface Suite . »62

Accessing the Suite . »62

Calling Other Plug-ins . »62
Adobe Illustrator Software Development Kit 4

PICA TOC

Calling Non-PICA Plug-ins . »63

SPInterface Suite Functions. »64

Chapter 12- The SPPlugins Suite »66
About the SPPlugins Suite. »66

Accessing the Suite . »66

Plug-in States . »66

Host Plug-ins . »66

SPPlugins Suite Functions . »67

Chapter 13 - The SPProperties Suite »72
About the SPProperties Suite . »72

Accessing the Suite . »72

SPProperties . »72

SPProperties Suite Functions. »73

Chapter 14 - The SPRuntime Suite »76
About the SPRuntime Suite. »76

Accessing the Suite . »76

SPRuntime Suite Functions . »77

Chapter 15 - The SPStrings Suite »79
About the SPStrings Suite . »79

Accessing the Suite . »79

String Pools . »79

SPStrings Suite Functions . »80

Chapter 16 - The SPSuites Suite »81
About the SPSuites Suite. »81

Accessing the Suite . »81

Plug-in Suites . »81

Suite Versions . »82

Suite Interface Files . »82

Supplying Multiple Suite Versions. »83

Adding and Allocating Suites »83

Loading and Unloading Suites. »84

Plug-in Suites, Export Properties, and Loading Order»84

SPSuites Suite Functions . »86
Adobe Illustrator Software Development Kit 5

0

About This Document

Chapter 0 - About This Document

This document describes the Adobe Plug-in Component Architecture, PICA. It
begins with a description of the managers components and continues with
chapters for each function suite. The suite chapters are in alphabetical order.

The format of the suite chapter is fairly similar with a general introduction
to the suite, followed by any concepts and structures used by the suite. A
description of specific functions ends the chapter.

Viewing and Printing This Document
This document was designed to be usable on the screen and on paper. When
viewing on screen, a reduction of 85% will make it fit on half a 17 inch
monitor. When printing, choose the Shrink to Fit option. This will give a
printed page layout suitable for use in a 3-ring binder, even with double
sided pages. Acrobat book marks are availabe and allow easy navigation of
the file.

Conventions
Constants in this document are denoted with a preceding lowercase ’k’, for
instance, kSPInterfaceCaller. Globals variables will be of two types. General
usage globals begin with a lowercase ’g’, for instance, gError. Plug-in often
keep suite references as globals. These are indicated by a lowercase ’s’, for
instance, sSPInterface. The capital SP in a suite global means that the suite
is provided by Suite PEA. Other hungarian notation is not used.

Accessing the Suite
Each of the suite chapters will have a section of this name with suite
constants and an example of how the suites are acquired. The example will
look something like this:

SPBlocksSuite *sSPBlocks;

error = sSPBasic->AcquireSuite(kSPBlockseSuite,

kSPBlocksSuiteVersion, &sSPBlocks);
if (error) goto error;

The sSPBasic variable in the code above is from the SPMessageData structure
passed to the plug-in main entry point. It is assumed to be defined as:

SPBasicSuite *sBasic = message->d.basic;
The Adobe PICA API 6

About This Document

Supporting Documents

There are five companion documents to this reference as follows:

Document Title Description

AI7 Plugin Intro & Tutorial What plug-ins are and how to write them

AI7.0 Function Reference Reference to functions in the Adobe Illustrator API

PiPLs in Adobe Illustrator The Plug-in Property List

The Adobe Dialog Manager API Reference manual for the ADM API. This is the cross-
platform dialog manager for Illustrator 7.0

Porting Plug-ins Platform and Illustrator 6.0 to 7.0 porting issues
The Adobe PICA API 7

1Intro
Chapter 1 - Intro

About the PICA Plug-in Manager

The plug-in management core of Adobe Illustrator and other applications is
a technology called "PICA" (Plug-in Component Architecture). PICA provides
a standard way for an application to export an application programming
interface (API). In Adobe applications, code modules that use the API are
called plug-ins. Host applications and plug-ins that utilize the PICA interface
operate under a familiar environmnet that is flexible and extensible.

The PICA core handles the loading and calling of plug-ins, and means of
exporting callback functions. This functionality is provided to both the host
application and plug-ins, allowing plug-ins to provide their own APIs. In
addition to a growth path for the future, PICA provides an interface for
supporting legacy APIs.

There is a distinction between PICA and an application’s programming inter-
face. PICA has an API that an application uses to export its specific API.
Understanding PICA plug-ins is a foundation for understanding the applica-
tions plug-in API, but little to do with the application’s functionality. For
instance, the Illustrator API is built on top of the application and PICA, and
is used to extend the application with plug-in and art types.

This document provides a technical overview of the PICA technology. It is
intended to be used in conjunction with the PICA interfaces and sample files.

(Note: The term "PICA" is used in several ways. All basically refer to the API
technology or to the actual plug-in management code inside the application.
They are synonymous, the architecture being interchangable with its imple-
mentation.)

The Plug-in Model
On a macro-level, the PICA plug-in model looks something like the diagram
on the next page.

A host application is a normal application that incorporates the PICA plug-in
architecture. Host applications implement their core functionality with an
eye towards what will be necessary to expose certain functionality through
the plug-in API. It uses the PICA interfaces to add it’s own callback function
suites to the plug-in programming interface; a group of related functions
are called a "suite".

PICA plug-ins are located, loaded, and started up when the application is
first launched. Plug-ins may be unloaded to free memory. Later, when the
user triggers a plug-in in some fashion, will reload and call the plug-in as
needed.

Plug-ins are stand alone pieces of code that interface with the host applica-
tion. They will likely use some application provided functionality, but may
The PICA API 8

Intro
be completely self contained. PICA plug-ins are defined by a file containing
a special resource called a Plug-in Property List, or PiPL, rather than a file
type or extension. The PiPL describes to the application the PICA version for
which the plug-in was written, where the code to be called is, and other
information depending on the plug-in type.

Figure 1: The Plug-in Model

All plug-ins are controlled by an adapter. The adapter handles all basic inter-
facing with plug-ins, such as the startup process and interfacing to the host
application’s user interface. It may also provides a suite of functions to send
its plug-ins messages. PICA plug-ins are hosted by the PICA adapter, which is
integral to the PICA manager.

API adapters can be added by plug-ins to implement other plug-in APIs, for
instance Adobe’s pre-PICA Photoshop plug-ins (dubbed “pre-suitened”).
When PICA has finished loading all of the plug-ins that it knows about, it
will call any adapter plug-ins to have them load their plug-ins. An adapter
handles how plug-ins are added to host’s user interface.

All plug-ins use the host provided API to add user interface items to the host
application and access its data. For instance, they might use the tool suite to
add a new tool, or the path suite to access information on bezier paths.

Plug-ins can use the PICA API to add function suites and API adapters. Plug-
ins can also send messages to other plug-ins. All the PICA functionality avail-
able to the application is available to plug-ins.

In order to use a function in one of the API’s suites, plug-ins first request the
containing suite from PICA. If the suite is provided by another plug-in, PICA
will arbitrate the situation and ensure that the plug-ins load in the correct
order.

What is a Suite?
A suite is central to the design of PICA and a plug-in running under a host
application. A suite is just a pointer to some data. PICA imposes no interpre-
tation upon the suite’s contents. It assumes the publisher of the suite and its

Suite
PEA

Adobe Core Plug-in -
 Photoshop Filter Adapter

Adobe Core Plug-in Suite -
 Adobe Dialog Manager

Host Application - Imaging

Application Functionality Suites
Common Functionality Suites

Adobe Application -Illustrator

Application Functionality Suites
Common Functionality Suites

Host Application - ?

Application Functionality Suites
Common Functionality Suites

App Specific Plug-in

Photoshop 3.0 Filter

Photoshop 3.0 File Forma

Common Functionality Plug-in

App Specific Plug-in

Applications Suite PEA
Plug-ins

Legacy Plug-insThe Suite PEA Plug-in Model
The PICA API 9

Intro
clients know what’s inside. Typically, it is a simply a table of pointers to
related functions; they might access a data type or perform some common
operation. The client has the publisher’s definition of the structure and
makes calls to functions through the pointer. A PICA suite is analogous to a
COM interface or a SOM object description.

To use a suite, it is first acquired; when it is done being used, the suite is
released. To a plug-in the interface consists of just those suites that it uses
and it will likely only use a subset of the many suites available. PICA will
make sure that a function suite is available, reloading a providing plug-in if
necessary.

Since PICA divides the whole of the interface into many small, independently
versioned suites, changes to a suite become isolated and affect only those
plug-ins that depend on a given suite. Likewise, new suites have no affect on
existing plug-ins.

Suites are defined by a name and an api version number and are made up of
a table of functions and necessary data types. The simplest of suites is the
“SP Basic Suite”, which looks something like this:

// Basic Suite defining constants

#define kSPBasicSuite "SP Basic Suite"

#define kSPBasicSuiteVersion1

// The basic suite doesn't have any data structures

// Suite functions

typedef struct SPBasicSuite {

SPAPI SPErr (*AcquireSuite)(char *name, long version, void
**suite);

SPAPI SPErr (*ReleaseSuite)(char *name, long version);

SPAPI SPBoolean (*IsEqual)(char* passedID, char* whichID);

SPAPI SPErr (*Undefined)(void);

} SPBasicSuite;

// Errors

#define kSuiteNotFoundError"Suite not found"

Suites are organized around a data type or capability, such as manipulating
paths or implementing a type of user interface, and ideally a suite provides
all the functionality a plug-in needs to implement that capability. The PICA
plug-in manager provides a handful of core suites used to implement a plug-
in interface. These are used by the application to adds its interfaces and
plug-ins to extend it.

Importantly, multiple versions of the same suite can exist, making it easy to
grow the interface without losing compatibility with old plug-ins. A plug-in
using an old version of a suite is unaware and unconcerned with the exist-
ence of the newer versions of the same suite. Because suites are small and
manageable it’s easier to provide old versions.

Interface Files
The API for PICA is found in a directory accompanying this document called
"PICA API". The names of the files are descriptive of their contents, which in
most cases is a suite to access one of PICAs data structures. The file includes
the suite’s identifying name and api version constants and its suite functions.
If the suite has related plug-in messages they will also be defined. Descrip-
tions of the suites are found in later chapters of this document.
The PICA API 10

Intro
Some of the API files are support files and do not have suites. These are:
SPConfig.h

SPHost.h

SPMData.h

SPPiPL.h

SPTypes.h

"SPConfig.h" contains compiler flags indicating the plug-in development
platform. If part of your plug-in code is platform dependent, you may want
to use these defintions:

#define MAC_ENV 1

#define WIN_ENV 1

Only one of the environment flags will be true.

"SPTypes.h" contains a few basic constants and types:

#define TRUE 1

#define FALSE 0

#define NULL

#define SPAPI

typedef long SPErr;

These constants are defined if they do not already exist on a platform. NULL
is defined to be C and C++ compatible. SPAPI is used on some platforms to
standardize the parameter-passing conventions. Functions on the Macintosh
platform use pascal calling conventions. SPAPI on Windows is not defined as
anything. All error codes in PICA are four-byte values, of type SPErr.

"SPPiPL.h" includes all the basic structures of a plug-in property list and
properties. These are discussed further in the chaptert on PICA PiPLs.
"SPMData.h" contains the basic message data structure passed by PICA to
plug-ins. Other API files will contain message structures that build upon it.
"SPHost.h" contains the interface functions used by the host to access the
PICA manager. Plug-in development does not require them, but they may be
of interest.

Further documentation on how PICA plug-ins are used in a host application
and the inteface files for that host API may be located elsewhere in the SDK
where this document was found.

Some Design Goals
The primary design goals of the PICA plug-in manager are that it is flexible
enough to be implemented in multiple applications on multiple platforms;
that it is capable of supporting plug-ins under those varied hosts; and that it
is capable of supporting the evolving APIs of those hosts without disrupting
the existing installed base of plug-ins. The PICA plug-in manager meets
these goals.

To support all possible interfaces, the PICA interface is modular by design
and extensible in practice. It makes its functionality available to the applica-
tion and to plug-ins through “suites” of functions. Its core set of suites are
used by the application to export its API and handle plug-in access. The
same PICA functions allow plug-ins to add function suites, providing new
functionality without affecting the core application. The ability of the host
to provide adapters
The PICA API 11

Intro
A final goal of PICA was to have independence from development environ-
ments. PICA is based on the Standard C language and uses operating system
services common to all platforms. This enables Adobe’s commitments to its
APIs on multiple platforms to be fullfilled.

Common Plug-in Interface
While Adobe’s plug-in architecture design experience suggests that each
host application will always provide a unique API, a common plug-in inter-
face is still a desirable goal. Given the breath of data types and purposes of
existing application APIs, such an interface is likely to evolve over time and
have meaning at multiple levels. PICA serves as the starting point for the
common interface.

In its first iteration, the common interface between the application and the
plug-in is at the API management level and in the basic interfacing of plug-
ins. The common mechanism will mitigate the learning curve for the plug-in
developer, since learning how it works for one application is learning it for
all. A common interface also eases the work of supporting plug-ins on
multiple platforms.

Standard suites and plug-in types will extend the common interface. One
category of common suites is interface and utility suites. These further ease
the work of supporting plug-ins for a single application across multiple plat-
forms.

Standard interfaces to application data and services are the next step. Plug-
ins exploiting these resources will be sharable between applications. If two
applications share similar data, then the suite for that data in each applica-
tion could be similar or even identical. For example, bezier paths exist is
several of our applications. The suite for accessing and modifying bezier
paths could therefore be the same in all these applications. As a result, every
bezier path plug-in can be used with all these applications.

As the number of shared interfaces expands, so will the number of common
plug-ins. Issues such graceful degradation of plug-in functionality will
become important, as plug-ins will try to scale their capabilities based on
those of the host. Plug-ins developers will want to check for what interfaces
are supported and reduce their functionality when one isn’t available.

There will always be plug-ins that are meant to be used with a single appli-
cation. Many exciting plug-ins will take advantage of data types unique to a
host application. It follows that the suites for that data would be unique to
that application and that plug-ins that require them will naturally only work
with it. For example, graphs only exist in Illustrator. The suite for accessing
and modifying graphs would therefore only be available in Illustrator, and
as a result, every graph plug-in can only be used with Illustrator. These plug-
ins would still take advantage of the common plug-in interface and likely
the common utility suites.

To summarize, a PICA-based common plug-in interface is not an all-or-
nothing affair, where the entire interface must be implemented or nothing
will work. Nor is it an either-or affair, where it is either the Illustrator Plug-
in Interface or the Photoshop Plug-in Interface. Rather, PICA is the mecha-
nism that brings the interface (the suites) together. The interface becomes
the sum of its suites, the sum (set of suites) being determined by the capabil-
ities of the host application.
The PICA API 12

2Plug-ins
Chapter 2 - Plug-ins
A PICA plug-in is a piece of stand alone code that interface with a host
application. The plug-in file is located in the application’s plug-in folder. A
plug-in has at least two properties: a resource of type ’PiPL’, and a code
entry point conforming to the one described below. How the plug-in inter-
faces to the application is defined by it being a PICA plug-in and the API
exported by the host application.

Even without a host application API, a plug-in will have the behavior and
functionality provided by the PICA API. This would allow it to load and
unload, provide suites of its own, and manage other plug-ins, for instance,
sending other plug-ins messages. The capabilities of a plug-in beyond this
will primarily depend on the API extensions provided by the application.
Generally there will be some interface to the application’s user interface.
This may be as simple as adding a menu item or something more complex
such as a plug-in tool. Access to the application’s data will be provided in
some form.

What Defines a Plug-in?
A PICA plug-in must have two characteristics. It must have a valid Plug-in
Property List (’PiPL’) resource and it must have a code entry point described
by the PiPL. A ’PiPL’ resource contains information about the plug-in’s type
and how it is to be called. PICA will only consider files with PiPL resources to
be potential plug-ins. The type or extension of a file is not important in this
regard. Files with the correct properties as described in the next section will
be added to the plug-in list.

The second characteristic of a PICA plug-in is that it must have code native
to the platform on which it is to run. The entry point of the code is specified
in the PiPL resource. While early plug-in APIs from Adobe would run 68k
plug-ins from a PowerPC application or vice-versa, this mechanism is not
provided to PICA plug-ins. The entry point of the plug-in code will be called
with a variety of messages telling it actions to take.

Only plug-ins with the PICA version information in the PiPL are recognized
and included in PICA’s initial startup process. Non-PICA plug-ins are ignored.
(See the SPAdapters chapter for information on how non-PICA plug-ins are
supported.)

A plug-in will be loaded into and unloaded from memory as needed by PICA
and the host application. It needs to be written assuming it will not always
be kept in memory.

A PICA plug-in can expect certain services from its host. Because the plug-in
may be unloaded, PICA provides it a means of storing important data when
it is unloaded. Each time the plug-in is called it will be given enough infor-
mation to accomplish the action to be performed. In most cases, this will
include the basic suite so that it can acquire other suites.
The PICA API 13

Plug-ins
PiPLs
The PiPL is a resource critical to PICA plug-ins as it contains the information
needed to use the plug-in. As a minimum, it informs the PICA plug-in
manager about the type of the plug-in, the calling mechanism for the plug-
in code, and where that code exists. It may also contain other information
about the plug-in. PiPL stands for Plug-in Property List and they are
described fully in a later chapter.

A PICA plug-in’s PiPL must contain 3 properties:

The ‘kind’ property indicates the type of the plug-in file; it is akin to a file
type. PICA will find and use plug-ins with a PiPL ‘kind’ of ‘SPEA’.

The interface version property ‘ivrs’ describes to PICA the calling conven-
tions expected by the plug-in. It is currently 2.

A code descriptor property indicates to PICA where the plug-in code resides.
Code descriptors are available for 68k-based and PowerPC Macintosh, and
Windows based PICA plug-ins. A plug-in can have multiple code descriptor
resources if is to run on several platforms. For instance a ‘fat’ Macintosh
plug-in would have 68k and PowerPC code descriptors.

If a plug-in exports one or mores suites of functions it must have a fourth
property to indicate this. The export property, ‘expt’, lists the names and api
version numbers of the suites that a plug-in provides. When a request for an
external suite is made, PICA will use the export PiPL to find the providing
plug-in. When this has been done, the now available suite reference will be
returned to the requesting code.

The kind, version, and code descriptor properties described above should be
in a standard platform resource. Examples are provided with the source code
accompanying this document. PICA also provides a means of creating
resources at runtime.

Plug-in Loading Order
The loading order of plug-ins becomes important when one plug-in depends
on a resource provided by another, as the resource providing plug-in must
be loaded first. To ensure that the interdepencies of plug-ins are handled
correctly, PICA plug-ins that provide a resource such as a suite declare in
advance what they export. PICA will use this information when loading and
executing plug-ins, ensuring that suites and other resources are available.
The export information is declared in the PiPL resource.

The Plug-in Entry Point
The compiled plug-in code referenced by the code descriptor is written in C.
PICA communicates with your plug-in by calling its entry point (e.g. main()),
which is defined by the platform code descriptor in the PiPL. Here’s what
and entry point looks like:

#if Macintosh

SPAPI SPErr main(char *caller, char *selector, void *data) {

#else

SPAPI SPErr PluginMain(char *caller, char *selector, void *data) {

#endif

SPErr error = kSPNoError;

...

return error;
The PICA API 14

Plug-ins
}

Three arguments are passed to the main() routine regardless of the reason
it is called; together they make up a message. The first two are C style
strings indentifying the message action, or what the plug-in is supposed to
do. The third is a pointer to a data structure. It is undefined at main()
because it’s content depends on the message action received. When you
determine the message action, you will type cast the data as needed. The
result of main() is an 4-byte error code.

Message Actions: Callers and Selectors
The message action passed to plug-in consists of two identifiers, a caller and
a selector . The caller indicates the sender of the message (PICA, the host
application, or a plug-in) and a general category of action. The selector
defines the action to take within that category. For instance, an application
might send a message action based on these two indentifier strings:

// These are the hypothetical callers and selector

#define kMyAppMenuCaller “My App Menu”

#define kMyAppGoMenuSelector "Go Menu"

The caller and selector identifiers are C style strings. This is so that new
message actions can be easily defined by other applications and plug-ins
with little chance of conflict. The convention used is for the caller to have a
name or abbreviation of the caller’s application or company at the start of
the string. For instance, all PICA action identifiers begin with ’SP’.

PICA message actions use four callers with many associated selectors. The
standard PICA callers and selectors are described further below. For the
message caller, selector, and data associated with a host application API, see
that application’s API documentation.

Whenever a plug-in is loaded into memory or unloaded from memory, PICA
will send it an access message. The action will be the access caller and a
reload or unload selector. This is the plug-ins opportunity to setup, restore,
or save state information. The access caller/selectors bracket all other callers
and selectors. The access/reload will be the first message received. The
access/unload will be the last message received. A plug-in should not acquire
or release suites other than those built into PICA at this time.

#define kSPAccessCaller "SP Access"

#define kSPAccessUnloadSelector"Unload"

#define kSPAccessReloadSelector"Reload"

PICA has three interface actions, where the plug-in can interact with its host.
The host application will supplement these with its own interface-like
actions. When the application is first launched PICA will startup all the plug-
ins it finds. This is an opportunity for the plug-in to allocate global memory,
add user interface items to the host application, and do other initialization.
A plug-in adding components to PICA, such as suites and adapters, would do
it at this time. The startup message action is received at this time: the inter-
face caller and the startup selector.

When the user quits the host application, PICA tells all of its plug-ins that it
is shutting down. It will send each a shutdown message action, consisting of
an interface caller and shutdown selector. Shutdown is intended for flushing
files and preserving preferences, not for destruction. A plug-in that exports
a suite should not dispose its PICA globals or suite information, since it may
be called after its own shutdown by another plug-in’s shutdown. For
example, if your plug-in implements a preferences suite that other plug-ins
The PICA API 15

Plug-ins
use, they may call you in their shutdown handlers after you’ve already shut
down.

A third message action received by a PICA plug-in is an opportunity to
display information about a plug-in on the screen. The action is indicated by
the interface caller and the about selector.

#define kSPInterfaceCaller "SP Interface"

#define kSPInterfaceStartupSelector "Startup"

#define kSPInterfaceShutdownSelector "Shutdown"

#define kSPInterfaceAboutSelector "About"

The remaining PICA message actions are used by plug-ins to specify proper-
ties at runtime and by plug-ins that add API adapters. More information on
using these selectors is in the related chapters.

Handling Callers and Selectors
A PICA plugin’s organization is largely based on the messages received by its
main(). The main routine of a plug-in basically becomes a switch imple-
mented as a series of string compares that call functions appropriate for the
message action caller and selector. For instance:

SPAPI SPErr main(char *caller, char *selector, void *data) {

SPErr error = kSPNoError;

if (strcmp(caller, kSPAccessCaller) == 0) {

if (strcmp(selector, kSPAccessReloadSelector) == 0)

error = MySetupGlobals(data);

else if (strcmp(selector, kSPAccessReloadSelector) == 0)

error = MySetupGlobals(data);

} else if (strcmp(caller, kSPInterfaceCaller) == 0) {

if (strcmp(selector, kSPInterfaceStartupSelector) == 0)

error = MyStartupPlugin(data);

else if (strcmp(selector, kSPInterfaceAboutSelector) == 0
)

error = MyAboutPlugin(data);

// check for each of the other callers and selectors...

else if (strcmp(caller, kMyAppMenuCaller) == 0 &&

 strcmp(selector, kMyAppGoMenuSelector) == 0)

error = MyHandleMenu(data);

// else if ...

return error;

}

Message Data
The other argument passed to the plug-in entry point is a pointer to a
message data structure. This structure contains enough information for the
plug-in to handle the message. For instance, if the message action was that a
mouse was clicked, the message data structure would contain the mouse
position.

The contents of the message data structure depend on the message action
and are not completely known until the plug-in has identified this. Most
PICA messages will have a minimum set of information embedded in the
structure, the SPMessageData structure at the beginning of the message
data structure. This is actually dependent on the type of plug-in as imple-
mented by the host application. For instance, Adobe Illustrator plug-in types
The PICA API 16

Plug-ins
expect that the message data is embedded. Other hosts may define messages
where it is not guaranteed.

typedef struct {

 SPPluginRef self;

 void *globals;

 SPBasicSuite *basic;

} SPMessageData;

typedef struct {

 SPMessageData d;

} SPcallerMessage;

A host application message will likely have this core message data
embedded, but it is possible that it is not provided. Check the host applica-
tion’s API documentation for more information.

The core of any plug-in message data is set by PICA and includes the basic
information for the plug-in to operated. The self member is a reference to
the plug-in being called. The globals member is a 4-byte value specified by
and preserved for the plug-in. The basic member is a reference to the PICA
Basic Suite.

The reference to the running plug-in’s self is used to add plug-in suites and
adapters to PICA and other plug-in data to host application. PICA and the
host application will store this value with the added data. It will then be
used to recall the plug-in as needed.

The plug-in can set the globals member to any four byte value; most likely
this will be a pointer to a block of memory allocated by the plug-in. This
value will be preserved by PICA when the plug-in is unloaded and passed
back to the plug-in each time it is called. Plug-ins use this block to store any
state information they need to maintain.

The SPBasic suite reference basic contains functions with which the plug-in
can acquire and release any other suites it needs to run.

The message data structure received by a plug-in when the message action’s
caller is kSPInterfaceCaller is an SPIntefaceMessage structure. This is simply
a container for the SPMessageData:

typedef struct SPInterfaceMessage {

SPMessageData d;

} SPInterfaceMessage;

The message data structure received by a plug-in when the message action’s
caller is kSPAccessCaller is an SPAccessMessage structure. This is simply a
container for the SPMessageData:

typedef struct SPAccessMessage {

SPMessageData d;

} SPAccessMessage;

When the host application or a plug-in wishes to send a message to a plug-
in, it will pass in a relavant message data structure. The menu action above
might have a message structure such as this:

typedef struct {

 SPPluginData d;

 long myMenuCommandID;

} MyAppMenuMessage;
The PICA API 17

Plug-ins
It includes the SPPluginData at the beginning of the structure followed by
the information menu command to be handled. The host application API
documentation describes its message actions and data.

Using Suites and Callback Functions
An application’s API is composed of callback functions organized into suites.
Before a plug-in can use a function that is part of a suite, the suite
containing it must first be acquired. A function suite is an structure filled
with function pointers and when a plug-in acquires a suite, a pointer to this
structure is returned.

When the function suite is no longer needed, the acquired suite is released.
It is important to do this so that the PICA manager can run optimally. For
instance, PICA keeps track of how many times a suite has been acquired. If a
suite added by plug-in is no longer in use (its access count is 0), the plug-in
may be unloaded to free memory.

Acquiring and Releasing Suites
When a plug-in is first called it only knows about one suite. The message
data structure passed to all plug-ins has a member variable basic, which
points to the “SP Basic Suite”. The basic suite is used to access other suites
and contains two important functions for doing so:

SPAPI SPErr (*AcquireSuite)(char *name, long version, void **suite
);

SPAPI SPErr (*ReleaseSuite)(char *name, long version);

A plug-in uses the first function, AcquireSuite(), to gain access to a suite of
functions. All acquired suites must be released with the ReleaseSuite()
function when the suite is unneeded.

To acquire a suite, you first need to declare a suite pointer. For instance,
suppose a host application provides the following suite with name and
version constants:

#define kMyAppMenuSuite "My App Menu Suite"

#define kMyAppMenuSuiteVersion 1

typedef struct MyAppMenuSuite {

AddMenu(SPPluginRef plugin, MyMenuRef *menu);

}

The plug-in’s reference to the above suite would be:

MyAppMenuSuite *sMyAppMenu;

A suite is acquired and released using its name and version number, found in
its published header file. So to acquire the above menu, you would do some-
thing like this:

SPErr error;

error = (*message)->d.basic->AcquireSuite(kMyAppMenuSuite,

kMyAppMenuSuiteVersion, &sMenu);

A pointer to the acquired suite’s functions is returned in sMenu.

Calling a Suite Function
The example above calls a function in the basic suite. Functions in other
suites are called using a pointer to an acquired suite. For instance, the above
The PICA API 18

Plug-ins
variable sMenu points to the structure with the hypothetical menu suite
function pointers.

The suite function pointer is dereferenced and used as a function pointer
using the calling form:

sMenu->function();

Since they are used throughout the plug-in code, it is convenient to make
suite variables global. The convention used for these global variables is a
small ‘s’ followed by the suite name, e.g. sBasic as shown above, sMenu for
the menu suite, etc.

A Complete Example
Suppose a plug-in is going to add a menu item to the host application. To do
this it must use the AddMenu() function, which is a part of the “My App
Menu Suite”, version 1. The suite name and version number are passed to
the AcquireSuite() function. After the function is used, the suite is release.
This whole process is demonstrated below.

SPBasicSuite *sBasic = message->d.basic;

MyAppMenuSuite *sMyAppMenu;

SPErr error;

// request the needed suite

error = sBasic->AcquireSuite(kMyAppMenuSuite,

kMyAppMenuVersion, &sMyAppMenu);

if (error) goto error;

// use the suite

error = sMyAppMenu->AddMenu (message->plugin, nil);

// release the suite

sBasic->ReleaseSuite(kMyAppMenuSuite, kMyAppMenuVersion);

error:

handleError(error);

Suite .h Files
Every suite will have the suite name and version in the suite header file as
well as other definitions, such as error strings, particular to their function. If
the suite defines plug-in messages they will also be found in the header file.
At the end are the suite functions. The function pointers should be fully
prototyped.

Platform Considerations
While Adobe PICA plug-ins are highly portable across platforms, there are a
number of platform considerations you will need to keep in mind when
writing them. Differences are related to the architectures of the hardware or
operating system on which host is running, and these have been abstracted
so that the API call works on both environments with a minimum of plat-
form support code. General issues are discussed below.

The main cross platform differences in plug-ins will often be in presenting
the user interface and resource data; depending on user interface
complexity, this can be a significant undertaking. Other differences involve
how the host allows access to its data types and how supported plug-in types
are added to the application. The Adobe PICA manager does not provide
The PICA API 19

Plug-ins
resources to handle this situation, though the host may. This host API should
also be cross platform, though there may be exceptions. Some Adobe
Systems applications support the Adobe Dialog Manager API (ADM), which is
itself an Adobe PICA plug-in. For more information on how the plug-in host
handles cross platform issues or on ADM, check the documentation and
sample code accompanying this SDK.

Plug-in Property Lists
All Adobe PICA plug-ins must have a plug-in property list (PiPL), which is a
resource used to identify compatible plug-ins and provides minimal informa-
tion about them. Complete information on the structure of a PiPL resource is
found in the "Adobe PICA PiPLs" chapter. Resource files with minimal PiPL
data are included with the various sample projects, and can be used with
your plug-in project. The file called "BasePiPL.x", where x is a platform
resource extension. The basic PiPL has three properties: a type, a version
number, and a code descriptor.

Additional property messages, notably "export" properties, are described in
elsewhere in the plug-in SDK.

The Entry Point
All plug-ins have a single entry point to the plug-in code. On the Macintosh
68k platform, this is of type pascal and must be the C code main() function.
On the PowerPC, it can be any function name, though to minimize code
differences, main() is also used.

main(char *caller, char *selecter, void *message);

On Windows, the entry function is by convention PluginMain().

pluginMain(char *caller, char *selecter, void *message);

For PowerPC and Windows, the actual entry point is specified with the PiPL
resource code property for the running platform.

On Windows platforms, this entry point is also declared as a .dll function in
the .def file for the plug-in. This is the only function that must be exported.
In addition to the plug-in entry point, a standard main routine for handling
the .dll needs to be created. You could use this, for instance, to store a copy
of the .dll instance in a global. DLL support files are included in the sample
code and can simply be copied and reused.

Memory
Adobe PICA provides the Block suite for pointer based memory allocation.
This is linked to the host application’s memory manager. The host applica-
tion may provide other memory management function suites, for instance to
provide a single entry to machine specific memory calls (Handles on the
Macintosh and HANDLEs on Windows).

Resources
When a Adobe PICA plug-in is running on the Macintosh, its file’s resource
fork is the current one. Adobe PICA plug-ins for Windows keep standard
resources in the plug-in file. To access these, you will need to have the

Table 1: Adobe Illustrator 7.0 Plug-in Properties by Platform

Property/Platform Macintosh 68k Macintosh PowerPC Windows 32

Type SPEA SPEA SPEA

Version 2 2 2

Code Descriptor ’m68k’ ’pwpc’ ’wx86’
The PICA API 20

Plug-ins
HInstance of the plug-in file. This can be obtained by using the provided
SPAccessSuite function,

SPAPI SPErr GetAccessInfo(SPAccessRef access, SPPlatformAccessInfo
*info);

The host application may provide some cross-platform means of accessing
resources, for instance, the Adobe Dialog Manager allows access to string list
and picture resources, APIs.

Byte Information and Structures
There are actually very few Adobe PICA data types. Specific data structures
for the Macintosh and Windows implementations are usually the same with
the exception of platform dependencies such as byte order and alignment.
On Windows byte alignment is to 4 byte boundaries. On Macintosh, struc-
tures are 68k 4-byte aligned. This is handled in the header files, so the plug-
in project can have different internal alignment.

System Requirements
For Macintosh, both 68k and PowerPC platforms are supported. The plug-in
must have a native version for the platform on which it is to run (they must
be fat; 68k plug-ins do not run on the PowerPC). For Windows, plug-ins
should be created for a Win32 platform such as Window NT or Windows95.

Project Considerations
For Macintosh plug-ins, use a 68k and PowerPC project. Build the 68k
project into an RSRC file and then include this in the PowerPC project. The
final output can be of any type and creator.

For Windows plug-ins, use a make file or project to create a .dll file. The
extension of the file is unimportant as a plug-in’s PiPL resource identifies it.
The host may have a standard extension for it’s plug-ins, e.g. Adobe Illus-
trator’s default extension is “.aip”.

Table 2: Project Informatin by Platform

Project/Platform Macintosh 68k Macintosh PowerPC Windows 32

Project Type Code Resource
defined by PiPL

Shared libary .DLL

Default File Type/
Extension (Example is
Adobe Illustrator)

Creator - ’ART5’
Type - ’ARPI’

Creator - ’ART5’ Type -
’ARPI’

’.AIP’
The PICA API 21

3PiPLs
Chapter 3- PiPLs

The Plug-in Propery List Resource
A Plug-in Property List, commonly refered to a ’PiPL’ (pronounced pipple),
resources provide a host application information about a plug-in. This infor-
mation includes indicators about the types and locations of available code,
versions, and other dependencies of the plug-in.

PiPLs were first used in Adobe Photoshop 3.0 plug-ins. They have been
adapted for use with the PICA by ignoring certain Photoshop specific proper-
ties and defining others. The general PiPL definition is the same as that for
Photoshop. More information on PiPL resources can be found in that SDK’s
documentation. While the complete definition of of the PiPL structure is
useful to have, the last sections of this chapter describe what you need to
get quickly started with the PiPLs.

The PiPL Structure
Any plug-in property list has a version number and a count followed by a
sequence of arbitrary length byte containers called properties. A ‘C ‘ struct
definition for the plug-in property list is:

typedef struct PIPropertyList
{

int32 version;
int32 count;
SPProperty properties[1];

} PIPropertyList;

Properties
Each property has a vendor code, a key, an ID, a length, and property data
the size indicated by the length.

The ‘C’ struct definition for the plug-in properties is:

Table 1: PiPL Fields and Purposes

Field Purpose

version Denotes the version of this specification to which the 'PiPL' is
formatted. The current version is 0.

count Holds the number of properties contained in the 'PiPL'. 0 is a
valid value denoting a 'PiPL' with no properties.

properties A variable length array of variable length property data
structures. Holds the actual contents of the 'PiPL'.
The PICA API 22

PiPLs
typedef struct PIProperty
{

OSType vendorID;
OSType propertyKey;
int32 propertyID;
int32 propertyLength;
char propertyData [1];

/* Implicitly aligned to multiple of 4 bytes. */
} PIProperty;

The fields are defined as:

All list and property fields are four byte aligned.

Platform Dependencies
The 'PiPL' format is fairly portable in that everything is four byte aligned. All
OSType and int32 fields are represented in native byte order for a given
platform so the bytes of "the same" 'PiPL' will differ between a big-endian
machine (e.g. the Macintosh) and a little-endian machine (e.g. an Intel x86
based Windows machine). If one examines the bytes of the PiPL section of an
x86 resource binary, it will be backward compared to the Mac. If you use the
pre-defined PI-types, they will be interpreted and stored correctly as in the
following example (see PIKindProperty). If, however, an OSType has not
been defined and you wish to enter it as a 4-char series, then (since it is not
interpreted as a long) you would have to supply the chars in reverse order.

'PiPL's are intended to collect all plug-in metadata in a single place. For
cross platform development, this will be quite useful since MS-DOS and its
Windows derivatives lack a resource management mechanism. Plug-in devel-
opers other than Adobe are encouraged to define new properties for exten-
sions to plug-in metadata rather than introducing new resource types.

Table 2: Property Fields and Purposes

Property Field Purpose

vendorID Identifies the vendor defining this property type. This allows
other vendors to define their own properties in a way that
does not conflict with either Adobe or other vendors. It is rec-
ommended that a registered application creator code be used
for the vendorID to ensure uniqueness. For instance, all Photo-
shop properties described in the Photoshop Plug-in SDK docu-
ment use the vendorID '8BIM'. All PICA properties use the
vendorID 'ADBE'.

propertyKey Specifies the type of this property. Property types used by Pho-
toshop are documented below. (Think of a property type as
similar to a resource type.)

propertyID In theory this can be used to store more than one property of
a given type (rather like a resource ID). In practice, this field is
always zero. It should be thought of as reserved for future
use.

propertyLength Contains the length of the propertyData field. It does not
include any padding bytes after propertyData to achieve four
byte alignment. This field may be zero.

propertyData A variable length field that contains the bytes which are the
contents of this property. Any values may be contained.
The PICA API 23

PiPLs
Types
The following types will be used in defining properties:

General properties
The following are property keys recognized by PICA.

Plug-in Kind OSType

#define PIKindProperty 'kind'

This property encodes the type or kind of a plug-in. The expected value for a
PICA plug-in is 'SPEA'. Illustrator 6.0 used a ’kind’ property ’ARPI’. Photo-
shop defines other valid values such as a filter being '8BFM'. These values,
while valid, are not recognized by the PICA loader; they may be recognized
by a PICA adapter.

Version of kind specific API int32

#define PIVersionProperty 'ivrs'

This property indicates which revision of the plug-in interface expected by
the plug-in. The number indicates mechanisms such as the form of messages
to be passed, and a version change should be assumed to be 100% incompat-
ible with other versions.

Code Descriptor Properties
Code descriptors tell the application running a plug-in the location of a
plug-in’s code. More than one code descriptor may be included to build a
"fat" plug-in which will run on different types of machines. PICA does not
support emulated plug-ins, so if a code descriptor for the running platform
does not exist, the plug-in will not be loaded. Function pointers in PICA
suites are to code for the platform on which it is running. For PowerPC code
this means native function pointers will be provided and that routine

Table 3: Types Used in Properties

Type Definition

int16, int32 These are 16 and 32 bit integers respectively. They are stored
within the 'PiPL' in native byte order.

OSType Same representation as an int32 but tyPICAlly denotes a
Macintosh style 4 character code like 'PiPL'.

PString A Pascal style string where the first byte gives the length of
the string and the content bytes follow.

CString A C language style string where the content bytes are termi-
nated by a null character.

Structures Structures are tyPICAlly represented the same way they
would be in memory on the target platform. Native padding
and alignment constraints are observed.

Arrays Arrays are represented as a contiguous set of entries in the
'PiPL' tyPICAlly with native padding and alignment con-
straints observed. The length of the array is usually deter-
mined by the property length for arrays of fixed length
structures or types.
The PICA API 24

PiPLs
descriptor operations are not required either in calling the plug-in or for the
plug-in to invoke PICA or host application callback functions.

68k code descriptor PI68KCodeDesc

#define PI68KCodeProperty 'm68k'

This descriptor indicates a 68K code resource. The type for this property is:

typedef struct PI68KCodeDesc {
OSType resourceType;
int16 resourceID;

} PI68KCodeDesc;

Any resource type may be used. For instance, the convention for PICA plug-
ins running under Adobe Illustrator 7.0 is ’ARPI’, number 16000

PowerPC code fragment descriptor PICFMCodeDesc

#define PIPowerPCCodeProperty 'pwpc'

This descriptor indicates a PowerPC code fragment in the data fork of the
plug-in file. The type for this property is:

typedef struct PICFMCodeDesc {
long fContainerOffset;
long fContainerLength;
char fEntryName[1];

} PICFMCodeDesc;

The fields are defined as follows:

Windows 32-bit DLL code descriptor PIWin32x86CodeDesc

#define PIWin32X86CodeProperty 'wx86'

This descriptor is used for 32 bit Windows DLLs. The type for this property is:

typedef struct PIWin32X86CodeDesc {

char fEntryName[1];

} PIWin32X86CodeDesc;

Table 4: PICFMCodeDesc Fields and Descriptions

Field Description

fContainerOffset Contains the offset within the data fork for the start of this plug-
in’s code fragment. This allows more than one code fragment
based plug-in per file.

fContainerLength Holds the length of this plug-ins code fragment. If the fragment
extends to the end of the file (e.g. it is the only fragment in the
file), the container length may be 0.

fEntryName The entrypoint name is represented as a Pascal string and is used
to lookup the address of the function to call within the fragment.
If the entrypoint name is a zero length string, the default entry-
point for the code fragment will be used. The entrypoint name
allows a single code fragment to contain more than one plug-in.
(Note: in order for the Code Fragment Manager to find an entry-
point by name, that name must be an exported symbol of the
code fragment.) Entry point names allow more than one plug-in
to be exported from a single code fragment.
The PICA API 25

PiPLs
The fields definitions are:

Export Properties
Export properties are used by plug-ins to inform PICA of the suites and
possibly other resources which they provide. Exports allow interdependen-
cies between plug-ins to be resolved by PICA in a logical manner. A plug-in
should have at least one export property, even it is simply the name of the
plug-in or a dummy string.

For instance, if one plug-in needs a suite provided by a second plug-in, the
second plug-in’s export property insures that PICA will be able to find and
load the second plug-in before the first one. The plug-in exporting the suite
is able to initialize its function lists and other values. The correct loading
order allows the first plug-in’s suite request to succeed.

The simplest case of plug-in dependencies is with function suites as
described above. Other dependency information can be indicated by an
export property. On a broader scope, plug-ins may depend on the existence
of another plug-in even if it doesn’t explicitly export callback functions. A
possible example of such an exported property would be a menu item
provided by another plug-in.

Export properties are defined below.

Exports List Property Descriptor PIExportsList

#define PIExportsProperty 'expt'

This descriptor contains the list of dependencies that a plug-in exports:

typedef struct PIExportDesc
{

long fCount;
PIIEListsDesc fExports[1];

} PIExportDesc

The fields definitions are:

Table 5: PIWin32x86CodeDesc Fields and Descriptions

Field Description

fEntryName The entry point name is used to lookup the function which is
called to invoke the plug-in. The name is represented as a NULL
terminated string. The string may need to be padded with addi-
tional NULL charcters to satisfy the 4 byte alignment require-
ment..

Table 6: The PIExportDesc Fields and Descriptions

Field Description

fCount The number of suites (resources) exported by the plug-in.

fExports A variable length list describing the suites provided by the
plug-in.
The PICA API 26

PiPLs
PIIEListsDesc
The fExports field of the PIExportDesc structure contains a list of exported
resource descriptions. These definition of the structure is:

typedef struct PIIEListDesc
{

long fLength
CString fName; // padded to four bytes
long fVersion;

} PIIEListDesc;

The field definitions are:

Dynamically Declared Properties
PICA supports resource PiPLs and certain properties must be specified staticly
in a platform resource. PICA also provides a mechanism for declaring proper-
ties in at runtime.

PICA will find resource based properties first and this can be used to opti-
mize processes such as startup. Providing a property in a resource allows
PICA to obtain it without loading and calling the plug-in. If a plug-in does
not export any suites or resources, it should include a single resource-based
export. This can be the name of the plug-in or a dummy string.

If the ‘expt’ or other property is not found in a plug-in’s PiPL resource, the
plug-in will be sent two messages requesting the property. The plug-in can
build the appropriate property information and return a pointer to it. or it
may ignore the request. In either case, PICA adds the new (possibly NULL)
property to the plug-in’s property list. Subsequent searches for the property
will find the stored version (that is, it only asks the plug-in once for a partic-
ular property).

The message action is composed of a properties caller and two selectors:

#define kSPPropertiesCaller "SP Properties"

#define kSPPropertiesAcquireSelector "Acquire"

#define kSPPropertiesReleaseSelector "Release"

and they are received at the plug-in’s entry point just as any other message.
Within the main() function, you would determine the message type:

FXErr main(char *caller, char *selector, void *data) {
if (strcmp(caller, kSPPropertiesCaller) == 0) {

if (strcmp(selector, kSPPropertiesAcquireSelector) == 0)
{

Table 7: The PIIEListDesc Fields and Descriptions

Field Description

fLength The total length (including 4 bytes for this field) of the
AIIEListDesc record.

fName A C style string with the name of the suite to be exported.
The usable names of suites are found in the API documenta-
tion and header files.

fVersion The version of a suite provided. Supported versions should
also be listed in the API documentation.
The PICA API 27

PiPLs
error = AcquireProperty(data);

else if (strcmp(selector, kSPPropertiesReleaseSelector) == 0
)

error = ReleaseProperty(data);

else
// process any other messages

}

and then call a routine to create or release the property structure. When
creating the PiPL in memory, your should use the PICA Blocks Suite to allo-
cated the block of memory required.

The data passed with these message actions is:

typedef struct SPPropertiesMessage {

SPMessageData d;

PIType vendorID; // same as PiPL definition

PIType propertyKey;// same as PiPL definition

long propertyID; // as always, 0

void *property; // return the property here

long refCon; // for plug-in’s use. Set on acquire,

// given back on release

long cacheable; // most likely true

} SPPropertiesMessage;

When the kAISelectorAcquireProperty message is received the vendorID and
propertyKey fields define the requested property. PICA only requests ’ADBE’/
‘expt’ properties at runtime; the host app may request others. The proper-
tyID field is 0, as defined in the preceding PiPL description.

Based on the request, the plug-in must create the property in memory
exactly as defined in the PiPL description and return a pointer to this
memory block in the property field.

set the cacheable field to true if the information in the property data will
not change. Cacheable properties may be stored by the host in a startup
preferences file. If a property can change between sessions of the applica-
tion, the field would be set to false.

When the kAISelectorReleaseProperty message is received, the plug-in
should free the memory allocated to create the property.

Working with PiPLs
Basic PiPL resources usable by most plug-ins are found in the SDK in a folder
call "Base PiPLs". "Most plug-ins" are those that do not export a suite. These
PiPLs cans simply be included in your plug-in project file.

The Macintosh resource will support fat plug-ins and is a file called
"BasePiPL.rsrc". It describes a plug-in with 68k code in the resource ARPI,
16000; with PowerPC code in the data fork; and with no exports.

The Windows resource will support a plug-in with no exports written for a
Win 32 Intel-basd platform. It is found in a file called "BasePiPL.RC". The
plug-in entry point specified by it is PluginMain().
The PICA API 28

PiPLs
On Macintosh the easiest way to edit a PiPL is using the program Resorcerer.
A Resorcerer template in the file "BasePiPL.rsrc" makes editing property lists
straightforward. (ResEdit resource templates cannot handle a resource as
complex as a PiPL.) Windows PiPLs are currently edited in a text file.

Examples of plug-in allocating PiPLs at runtime are included in the host SDK.
PiPL resource files equivalent to those above, but without an ’expt’ property
are found in the "Base PiPLs" directory as"NoExptPiPL.RC" and NoExpt-
PiPL.rsrc".
The PICA API 29

4The Core
Chapter 4 - The Core

Based on the preceding chapters, there are several elements that make up
the PICA architecture that need to be described further: three components
and two interfaces. The host application interfaces to the PICA library and
uses it to implement and export its API. PICA then handles interaction with
the plug-ins, loading them and allocating function suites as needed. Other
interactions, for instance a plug-in making calls directly to the application
using an application defined interface, are handled by the standard suite
mechanism and are not described here.

Internal Data Structures

The PICA manager is added to an existing application to handle the plug-in
interface. PICA is largely self contained, relying on only a small number of
functions provided by the host. It contains all the data structures and code
to handle scanning for plug-ins and loading and calling plug-ins designed
for it. It provides a core set of suites needed to use and extend the PICA
plug-in model, and arbitrates access to its suites and other function suites
added by multiple sources.

PICA is built upon four internal lists:

The first list kept by PICA is the adapter list. An adapter handles the inter-
facing of a plug-in to the host application. PICA plug-ins are hosted by an
internal PICA adapter. The host application and plug-ins can add other
adapters to the list, allowing non-PICA plug-in to run under the PICA API.
The adapter will search the file list for plug-ins types that it supports and
add them to the plug-in list. When notified by PICA to do so, the adapter is
reponsible for loading and calling the plug-ins it adds to the host, and must
do any conversion of messages, data structures or other API elements. There
will always be at least one adapter in the adapter list, PICA’s internal
adapter.

The file list contains every file that is a potential plug-in. The PICA plug-in
manager searches some folder or directory for plug-ins; the file list is basi-
cally a flattened list of all files in that directory and any subdirectories,
including folder aliases on the Macintosh. Using it avoids walking the folder
hierarchy repeatedly and ensures consistent behavior. Each file entry in the
list has platform specific information about it’s location and attributes.

PICA’s internal plug-in adapter use the file list to scan for plug-ins. It makes
the list available through a standard suite so that the application or adapter
plug-ins can also use it. Since it indescriminately adds all the files in the indi-
cated directory, it is likely that some entries will not be plug-ins. This is
intended so that the host application and plug-ins can also use it to check
for the existence of support files, such as dictionaries or a start up files.
Plug-in API adapters should use it search for other plug-ins. In the diagram
below, the plug-in list entries marked PS were added from the file list by the
PS Adapter, a plug-in.
The PICA API 30

The Core
Figure 1: Internal Data Structures

The plug-in list is a subset of the file list. It contains references to files that
are known to be plug-ins. Entries in the plug-in list have a reference to the
plug-in’s file, attributes, and a reference to the adapter supporting the plug-
in. After PICA has completed building the files list, its internal adapter iter-
ates through the list and checks whether or not each file is valid PICA plug-
in. It adds it plug-ins to the plug-in list with their host adapter set to the
PICA adapter identifier.

As with the file list, PICA provides a suite of functions to access the plug-in
list. If a plug-in implements an adapter for a non-PICA plug-in, it should scan
the files in the file list and add its plug-ins to the plug-in list with an appro-
priate adapter identifier. PICA keeps the master list of all plug-ins. When it
is time to call a non-PICA plug-in in this list, the caller can determine the
host adapter to call it appropriately.

The final list internal to PICA is the suite list, where it keeps track of all
available function suites and such information as who provides a suite’s
functionality and the access count. When PICA is first initialized, it places its
core suites in this list, including the “Suites Suite”. The “Suites Suite” is used
by the application to add its Adobe common and application specific suites
to the suite list. A plug-in uses the same mechanism to extend the API. When
a plug-in requests some API functionality by acquiring a suite, PICA scans this
list to determine if it is available and who provides it. If the requested suite
is from a plug-in, PICA loads the providing plug-in into memory before
making the suite available.

One additional data structure used and made available by PICA is a string
pool. The string pool is an efficient storage space for C style strings. When a
string is placed in the pool, PICA first checks to see if it already exists. If not,
the string pool manager will copy the string into the string pool and return
a pointer to it. If the string already exists, a pointer to the existing string
will be returned.

File List Plug-in List Suite List

Adapter List

SP Core
Suite
SP Core
Suite

Sweet Pea
Adapter

App Internal
Adapter
Plug-in PS
Adapter

SP

SP

SP
(PS Adapter)

SP

PS

PS
Plug-in
Suite

Plug-in
Suite

Sweet Pea

Application
Common
Suite
Application
Specific
Suite
The PICA API 31

The Core
Suites and Data Structure Interfaces
Each of the PICA data structures is accessible to the host application and its
plug-in through a standard suite. A small number of other suites is made
available to provide other functions useful for managing plug-ins and by
plug-ins.

The files, adapters, and plug-ins suites are fairly similar. Each has functions
for creating and disposing their list type. New elements can be added to the
list; the list can be traversed; and information on the entries such as file
information can be retrieved. The plug-ins suite has a number of associated
suites: access, interface, and properties. The access suite handles the loading
and unloading of a plug-in’s code. The interface suite is used to send a plug-
in a message. When PICA wants to load and run a plug-in’s code it uses these
suites similar to this pseudo-code example:

access->load plug-in

interface->set up plug-in message

access->call plug-in

interface->save plug-in data

access->unload plug-in

The properties suite is used by PICA to keep track of the properties of a
plug-in. Properties are kept in lists similar to the main PICA data lists, but
each plug-in has a seperate list of its properties. If PICA, the host app, or a
plug-in needs to examine the the elements of a plug-in’s PiPL for some
reason or find a particular property, it would use the functions in this suite.

The last suite used to manage plug-ins is the caches suite. If a low memory
situation is encountered and plug-ins currently cached in memory need to be
unloaded, the function in this suite can be used. The suite’s single function
will unload an unused plug-in from memory. It can be called repeatedly until
sufficient memory is available or all possible plug-ins have been unloaded. It
is not likely that plug-ins will use this suite.

The string pool suite is similar to the list management suites in that it can
accesses an internal data structure. It does not need the iterator functions or
information functions of these suites, so it is much simpler.

There are two suites for accessing PICA’s suite list. The basic suite is the
simpler of the two, providing two suite access functions. It is primarily how
plug-ins acquire and release the interfaces made available by PICA. The
suites suite gives complete access to the suite list in the same manner as file
and adapter suites give access to their lists. New suites can be added; the list
can be traversed; and information such as the provider of a function suite
can be obtained. Plug-ins exporting suites will use the suites suite to make
their APIs available.

While the data structure suites provide functions to create new lists or string
pools, PICA keeps its central lists, and these are the main structures that will
be used. To obtain a reference to any of PICA data structures the runtime
suite is used. The suite provides functions to access PICA’s string pool, suite
list, file list, plug-in list and plug-in adapter list references.

The last of the standard suites provided by PICA are the block suites. The
blocks suite is a simple pointer based memory manager, similar to the stan-
dard C libary malloc() and free() routines. Plug-ins must use this in some
cases when allocating blocks of memory. During the development period of
a host application, the host can have PICA track debugging information on
blocks allocated with the blocks suite. When a request is made for memory
through the blocks suite, PICA tags the blocks with a string passed to the
The PICA API 32

The Core
block allocate function. If available, this information is accessed using the
block debug suite functions.

List Management
PICA data structures are kept in lists. All PICA lists are used in much the same
manner. A general discussion is given here in lew of a slightly varying
description in each suite chapter; exceptions to the process outlined here
will be given as needed.

PICA data structures and the lists in which they are accessed by an opaque
reference. The list is made up of references to a data type. To traverse the
list, a list iterator is used.

typedef struct SPDataType *SPDataTypeRef;

typedef struct SPDataTypeList *SPDataTypeListRef;

typedef struct SPDataTypeListIterator *SPDataTypeListIteratorRef;

A reference to PICA’s internal lists is accessed using a function in its runtime
suite.

SPAPI SPErr (*GetRuntimeDataTypeList)(SPDataTypeListRef
*dataTypeList);

You might also generate your own list for the data type and use your stored
reference to it. As a short cut to accessing PICAs internal lists, you can pass a
NULL to function’s requiring a list reference

Once a reference to the list to be traversed has been obtained, you will need
a list iterator to traverse it. This is generated with the data type’s NewListIt-
erator() function. When it is no longer needed it will be disposed with data
type’s DeleteListIterator() function.:

SPAPI SPErr (*NewDataTypeListIterator)(SPDataTypeListRef
dataTypeList,

SPDataTypeListIteratorRef *iter);

SPAPI SPErr (*DeleteDataTypeListIterator)(SPDataTypeListIteratorRef
iter);

Once the list iterator is created, you can use the data type’s Next() function
to access each item in the list. The first time the Next() function is called,
the first item in the list will be returned. Consecutive calls return the next
item in the list. When the data type reference returned is NULL, the end of
the list has been reached.

SPAPI SPErr (*NextDataType)(SPDataTypeListIteratorRef iter,

SPDataTypeRef *dataType);

There is no way to return to the first item in the list, except to destory the
iterator and create a new one. Some lists have a Find() function which can
be used as a more direct way of accessing known entries. Lists are not
traversed often; if a data type reference is frequently needed it is simply
stored by the plug-in.

SPAPI SPErr (*FindDataType)(SPDataTypeListRef dataTypeList,

char *name, SPDataTypeRef *dataType);

Once the data type reference has been retrieved, the data type’s suite func-
tion can be used to access it if necessary

To add a new entry to a list, the data type’s Add() function is used. This will
take as arguments the list reference to which it is to be added and whatever
information is needed to add a valid data object.
The PICA API 33

The Core
SPAPI SPErr (*AddDataType)(SPDataTypeListRef dataTypeList, void
*data);

Plug-ins can create data type lists of their own if needed, except for the files
list. An example might be if an adapter wants to keep its plug-ins private
rather than adding them to the main plug-in list. There are two functions
for doing this.

SPAPI SPErr (*AllocateDataTypeList)(SPDataTypeListRef *dataTypeList
);

// may also take: SPStringPoolRef strings

SPAPI SPErr (*FreeDataTypeList)(SPDataTypeListRef dataTypeList);

The data type’s Allocate() function creates the list. Many Allocate() func-
tions take a string pool reference as an adational parameter. You can use
the runtime suite to get PICA’s pool and use it for the list’s strings. If you
create your own pool for the data type list you would pass it’s reference.
When the list is no longer needed, the data type’s Free() function is used to
dispose of it. If you have created a string pool for the list, you will alsoneed
to dispose it. The list must be disposed when the application quits.

Error codes
PICA uses four-byte values for error codes. Often these are mnemonic 4 byte
character codes, for instance Adobe Illustrator used ’STOP’ for kCanceled-
Error. Two universal errors defined by PICA are kSPNoError and kSPUnimple-
mentedError.

#define kSPNoError 0x00000000L

#define kSPUnimplementedError ’!IMP’

Other error codes should be defined by the returning suite and are defined
in its header file.
The PICA API 34

5The SPAccess Suite
Chapter 5 - The SPAccess Suite

About the SPAccess Suite
PICA’s access suite is used to load and unload plug-ins. Its functions are used
by those of the PICA interface suite in a simpler manner. When a plug-in is
loaded, a plug-in access is created. The access suite provides other functions
to obtain information about plug-in accesses.

Accessing the Suite
The SPAccess suite is referred to as:

#define kSPAccessSuite "SP Access Suite"

with the version constant:

#define kSPaccessSuiteVersion 2

It is acquired with the SPBasic suite as follows:

SPAccessSuite *sSPAccess;

error = sSPBasic->AcquireSuite(kSPAccessSuite,

kSPaccessSuiteVersion, &sSPAccess);

if (error) goto error;

Calling Other Plug-ins
The SPInterface suite provides a convenient way to send messages to other
plug-ins. It actually uses the SPAccess suite to send the message. The SPAc-
cess suite functions cab be used directly to achieve a similar result.

The code to call a plug-in using the access suite would look something like
this:

SPErr SendMessage(SPPluginRef plugin, char *caller, char *selector,

void *message, SPErr *error) {

SPErr result;

SPAccessRef access;

error = sAccess->AcquirePlugin(plugin, &access);

if (error) goto error;

error = sAccess->CallPlugin(access, caller, selector, message,
result);

if (error) goto error;

error = sAccess->ReleasePlugin(access);

error:

return result;

}

The PICA API 35

The SPAccess Suite
The plug-in is first aquired causing PICA to load it into memory if necessary.
The CallPlugin()function will pass the caller, selector, and message to the
plug-in’s entry point. When the plug-in call returns, you release it.

SPAccess Information
An SPAccessRef is returned by the AcquirePlugin() function. It is an access
path to an open Sweet Pea plug-in. When you acquire a plug-in it will be
loaded into memory if necessary. If it is already loaded, its existing access
reference is returned. When you are done using the SPAccessRef, you release
it using ReleaseePlugin(). The SPAccessRef is used primarily for making calls
to a plug-in.

SPAccessRef are reference-counted, meaning the number of times the plug-
in has been acquired is kept. While the access count is non-zero, the plug-in
is in use and will not be unloaded from memory. Releasing a plug-in decre-
ments its access count. If its count is zero, the plug-in is unused and it can be
unloaded from memory if needed. This means it's very important to balance
all of your calls to AcquirePlugin() and ReleasePlugin().

An SPPlatformAccessInfo structure contains platform-specific information
about the access path to an open plug-in.

typedef struct {

void *TopMapHndl;

short CurMap;

} SPMacResChain;

#ifdef MAC_ENV

typedef struct {

SPMacResChain *resources;

unsigned long lastAccessTicks;

} SPPlatformAccessInfo;

#endif

#ifdef WIN_ENV

typedef struct {

void *library;

unsigned long lastAccessTicks;

} SPPlatformAccessInfo;

#endif

On the Mac it contains resource chain information and a time stamp of when
it was last called. On Windows it contains the handle to the plug-in's library
and the time stamp.

The access info is used by plug-ins that export suites. They must manually
establish a resource context within any of their suite procedures before they
can access their resources. This is not necessary when a plug-in is called
through its entry point, since CallPlugin() sets up the resource context for
you. If a plug-in suite function failed to set up a resource context, the
resources of the calling plug-in would be active.
The PICA API 36

The SPAccess Suite
SPAccess Suite Functions

AcquirePlugin() Loads a plug-in into memory so that
it can be called

SPAPI SPErr AcquirePlugin(SPPluginRef plugin, SPAccessRef *access);

Given a reference to a Sweet Pea plug-in, this function loads the plug-in file
if necessary and prepares it to be called. It returns an access reference, which
you must use when calling the plug-in and which you must give to
ReleasePlugin() when you are through.

Note: You can acquire yourself if you want to stay loaded in memory even
when you're not being reference by anyone.

ReleasePlugin() Allows a plug-in to be unloaded
from memory

SPAPI SPErr ReleasePlugin(SPAccessRef access);

You must call ReleasePlugin() when you are through with a plug-in that you
had previously acquired. ReleasePlugin() adjusts the reference count of the
plug-in, possibly making it eligible for unloading. After releasing a plug-in
the access reference is no longer valid.

GetPluginAccess() Gets the current access reference of
a plug-in

SPAPI SPErr GetPluginAccess(SPPluginRef plugin, SPAccessRef *access
);

This function returns the current access of a plug-in plugin. If the plug-in is
loaded, its SPAccessRef will be returned. If the plug-in is not loaded, the
function will return NULL in access.

GetAccessPlugin() Gets the plug-in of an access
reference

SPAPI SPErr GetAccessPlugin(SPAccessRef access, SPPluginRef *plugin
);

Given an access reference, this function returns the plug-in to which it
belongs.

GetAccessEntry() Get the entry point of an access

SPAPI SPErr GetAccessEntry(SPAccessRef access, SPEntry *entry);

The function returns the entry point of a plug-in access. When the Call-
Plugin() function is used, it jumps to this location The entry point of the
plug-in is defined as:
The PICA API 37

The SPAccess Suite
typedef SPAPI SPErr (*SPEntry)(char *caller, char *selector,

void *message);

The C string arguments caller and selector tell why the plug-in is being
called, and the data structure pointed to by message contains any data asso-
ciated with it.

Yet another way to call a plug-in would be to acquire it, get the entry of the
returned access, and call the entry directly. Before calling the entry point,
you would need to make the plug-in the current one with SetCurrent-
Plugin().

GetAccessCount() Get the number of times a plug-in
has been acquired

SPAPI SPErr GetAccessCount(SPAccessRef access, long *count);

The number of times the plug-in has been acquired is kept by PICA. The
count for a given access is returned by this function.

While the access count is non-zero, the plug-in is in use and will not be
unloaded from memory. Releasing a plug-in decrements its access count. If
its count is zero, the plug-in is unused and it may be unloaded from memory
if needed.

GetAccessInfo() Get the access information for an
access reference

SPAPI SPErr GetAccessInfo(SPAccessRef access,

SPPlatformAccessInfo *info);

An SPPlatformAccessInfo structure contains platform-specific information
about the access path of an open plug-in. This function returns that a
pointer to that info for the specified access reference.

The access info is used by plug-ins that export suites.

CallPlugin() Calls a plug-in with the specified
message

SPAPI SPErr CallPlugin(SPAccessRef access, char *caller, char *se-
lector, void *message, SPErr *result);

Calls the plug-in referenced by access, sending it the caller, selector, and
message data pointers. The return value of the plug-in is returned to the
caller in result.

GetCurrentPlugin() Gets the current plug-in

SPAPI SPErr GetCurrentPlugin(SPPluginRef *plugin);

This function returns the current plug-in.
The PICA API 38

The SPAccess Suite
The access information of the current plug-in is the current resource context.

It is the one last specified by SetCurrentPlugin(). In many cases this is the
last plug-in called by PICA’s CallPlugin() function. It may be a plug-in spec-
ified by a plug-in adapter.

The current plug-in is not necessarily the one currently running because of
plug-in suite functions and other callback functions. For instance, if one
plug-in calls a suite function provided by a second plug-in, the first plug-in
remains the current plug-in while the function of the second is being
executed.

SetCurrentPlugin() Sets the current plug-in

SPAPI SPErr SetCurrentPlugin(SPPluginRef plugin);

Sets the indicated plug-in to be PICA’s current plug-in, making its resource
context current.

An API adapter that keeps its plug-in references in PICA’s plug-in list can use
this function to set up a resource context before calling one of them. Before
changing the current plug-in with this function, you should save the plug-in
reference of the existing current one. When your plug-in no longer needs to
be current, the previous state should be restored.
The PICA API 39

6The SPAdapters Suite
Chapter 6 - The SPAdapters Suite

About the SPAdapters Suite

PICA provides a set of services for managing plug-ins. The actual interfacing
of the manager and any plug-in is done via an adapter. This includes actions
such as telling the plug-in to do basic interfacing such as startup and shut-
down, and do the only standard user interaction, show an about box. PICA
plug-ins are controlled by an adapter that is built into the manager, so that
the adapter architecture is used in all cases.

Adapters can be added by PICA plug-ins and used to support other plug-in
APIs, providing a standard mechanism for handling backward compatiblity.
When PICA has found and started up all of its plug-ins with its internal
adapter, it will check the adapter list to see if any plug-in adapters were
added. If so, it will call each one and give it an opportunity to start up the
plug-ins it supports.

The adapter’s job is to translate the legacy plug-in’s API calls into those
supported by PICA and host application, including user interface items and
data translation. In addition to handling basic interface tasks, an adapter
needs to provide a suite or suites of functions that allow the host and other
plug-ins to call its plug-ins. The SPInterface suite is an example of this.

Accessing the Suite
The SPAdapters suite is referred to as:

#define kSPAdaptersSuite "SP Adapters Suite"

with the version constant:

#define kSPAdaptersSuiteVersion 3

It is acquired with the SPBasic suite as follows:

SPAdaptersSuite *sSPAdapters;

error = sSPBasic->AcquireSuite(kSPAdaptersSuite,

kSPAdaptersSuiteVersion, &sSPAdapters
);

if (error) goto error;

Plug-in Adapters

A plug-in making an adapter available does so when it receives the inter-
face/startup message. The plug-in obtains the adapter list from PICA and
uses the SPAdapter suite’s function AddAdapter(), like this:
The PICA API 40

The SPAdapters Suite
SPAdapterRef oldAPI;

SPAdapterListRef adapterList;

SPErr error;

error = sSPRuntime->GetRuntimeAdapterList(&adapterList);

error = sSPAdapters->AddAdapter(adapterList, message->d.self,

“old API adapter”, &oldAPI);

Adapter Messages
Once added, the plug-in will be called with the caller kSPAdaptersCaller and
a number selectors and is expected to respond to them.

#define kSPAdaptersCaller "SP Adapters"

#define kSPAdaptersStartupSelector "Start up"

#define kSPAdaptersShutdownSelector "Shut down"

#define kSPAdaptersFlushSelector "Flush"

#define kSPAdaptersDisposeInfoSelector"Dispose info"

#define kSPAdaptersAboutSelector "About"

#define kSPAdaptersFindPropertySelector"Find property"

#define kSPAdaptersAcquireSuiteHostSelector"Acquire Suite"

#define kSPAdaptersReleaseSuiteHostSelector"Release Suite"

The first of the selectors, kSPAdaptersStartupSelector, is a notification to
startup. When this is received, PICA will have completed its plug-in start up
process. The adapter can use the PICA file list as a source for potential plug-
ins and load and issue appropriate startup commands to its plug-ins. Note
that this is the second start up selector the a plug-in will receive, though
from a different caller. The adapter kSPAdaptersShutdownSelector message
action will be received when the application is about to quit running and
allows the adapter to notify its plug-ins of this event. The adapted plug-in
would do any necessary cleanup at this time, such as releasing system
resources. The adapter plug-in will receive a normal interface shut down
selector to do its own shut down process. To provide feedback to the user
about its startup and shutdown process, the adapter should inform the host
about each of its plug-ins using the startupNotify() and shutdownNotify()
host functions available through the SPRuntime suite.

The flush selector, kSPAdaptersFlushSelector, indicates that the host applica-
tion is trying to free memory and the adapter should do garbage collection,
unloading an unused plug-ins. The dispose selector, kSPAdaptersDisposeIn-
foSelector, is akin to a final flush message. It is received after the adapter
has shut down its plug-ins. Any memory occupied by its plug-ins should be
freed, as should any memory used to keep track of them, including private
PICA lists or string pools. This action is triggered by a called to the SPCaches
suite function, SPFlushCaches().

The about selector, kSPAdaptersAboutSelector, indicates that the host appli-
cation wants the plug-in indicated by the message structure to displayinfor-
mation about itself. This is equivalent to the about selector sent to a PICA
plug-in.

The remaining message actions sent to a plug-in adapter are used if it can
adapt a foreign function exporting system to PICA’s suite mechanism. In this
case, the adapter would be expected to provide properties that are usable
by PICA in finding the exported suites, and to load and unload the plug-in
providing the function tables. The adapter should return a PiPL for one of its
plug-ins when the kSPAdaptersFindPropertySelector selector is received.
Whether the adapter makes a PiPL or has the plug-in supply it is up to you.
The PICA API 41

The SPAdapters Suite
When an acquired suite is provided by an adapted plug-in not in memory,
the plug-in’s adapter will be called to load it into memory. The adapter will
receive the selector kSPAdaptersAcquireSuiteHostSelector. When the suite is
no longer needed, its providing plug-in’s adapter will receive a release noti-
fication, kSPAdaptersReleaseSuiteHostSelector. The adapter can unload the
plug-in at this time or wait for flush message.

Message Data
The message data structure received with a plug-in message is:

typedef struct SPAdaptersMessage {

SPMessageData d;

SPAdapterRef adapter;

struct SPPlugin *targetPlugin;

SPErr targetResult;

/* for Find property selector */

PIType vendorID;

PIType propertyKey;

long propertyID;

void *property; /* returned here */

/* for Flush selector */

SPFlushCachesProc flushProc;

long flushed; /* returned here */

/* for Suites selectors */

struct SPSuiteList *suiteList;/* use these if you need name,

struct SPSuite *suite; apiVersion, or internalVersion info */

struct SPPlugin *host; /* plug-in hosting the suite, to be

aquired/released by adapter */

void *suiteProcs; /* returned here if reallocated */

long acquired; /* returned here */

} SPAdaptersMessage;

The SPMessageData structure and the adapter reference will always be valid
when the plug-in is called. The adapter reference is that returned by the
AddAdapter() function and is used to indicate the adapter to which the
message is being sent. If a plug-in adds more than one adapter it will need
this information to know how to handle the message. Each of the other
message selectors will be passed necessary information in the message data
structure.

kSPAdaptersStartupSelector
kSPAdaptersShutdownSelector
kSPAdaptersDisposeInfoSelector
The startup, shutdown, and dispose info adapter selectors receive no other
information in the structure.

kSPAdaptersAboutSelector
If the adapter is called to display information about a particular plug-in, the
message structure member targetPlugin will indicate the plug-in. The
adapter should send the targetPlugin the correct about message. If the
about message returns a result, it can be returned to the host in the targe-
tResult field.

kSPAdaptersFlushSelector
The PICA API 42

The SPAdapters Suite
If the message selector is an adapter flush action, it will receive a function
pointer in flushProc. This function is likely supplied by the host application
and is called by the adapter to determine which plug-ins are removed from
memory. The number of plug-ins the adapter flushes from memory should be
returned in flushed. The flush function prototype is:

typedef SPErr (*SPFlushCachesProc)(char *type, void *data, long
*flushed);

The type and data are set by the calling adapter. The type is a C-style string
which indicates the type of the plug-in and the data structure contents to
the flush procedure. If it is to be removed, true is returned in flushed. The
adapter actually unloads the plug-in from memory.

#define kMyPluginAdapterFlushType "My Plugin Adapter"

typedef struct {

long lastAccess;

long whateverElse;

} MyFlushData

MyFlushData flushData;

long flush, flushCount = 0;

for (i = 0; i < kMyPluginCount; i++) {

flushData.lastAccess = myPlugins[i].lastAccess;

message->flushProc(kMyPluginAdapterFlushType, &flushData,
&flush);

if ((!myPlugins[i].inUse) && flush) {

unloadPlugin(myPlugins[i]);

flushCount++;

}

}

message->flushed = flushCount;

The adapter should provide information in a header file with the type string
used to identify it and the data structure it will pass to the flush function.
The host application supporting the adapter would use this information
within its flush function handle whether a plug-in of the type should be
unloaded. If the host is unfamiliar with the plug-in type, it may return a
default value of true or false.

SPErr HostFlushCachesProc(char *type, void *data, long *flushed) {

if (strcmp(type, kMyPluginAdapterFlushType) == 0) {

if (now - (MyFlushData*)data->lastAccess < kTwoMinutes)

*flushed = true;

} else if (strcmp(type, kOtherPluginAdapterFlushType) == 0) {

...

} else

*flushed = true;

}

If a plug-in wants to flush plug-ins from memory, it can use the SPCaches
suite to call all adapters with a SPFlushCachesProc() function. Its flush func-
tion would need to respect the types and data structures of other adapters.

kSPAdaptersFindPropertySelector
PICA keeps a list of properties with each plug-in in its list. If an adapter adds
plug-ins to PICA’s main plug-in list, they will be search for exports. The find
property selector will be sent to the adapter to obtain property information
about plug-ins it added.
The PICA API 43

The SPAdapters Suite
The plug-in for which PICA needs a property is indicated by the
targetPlugin field of the message. The needed property is indicated by the
three property identification fields:

/* for Suites selectors */

PIType vendorID;

PIType propertyKey;

long propertyID;

These are as described in the PiPL chapter. The adapter should generate,
load, or otherwise obtain the property information for the plug-in. The
property data is returned in the structure member:

void *property; /* returned here */

The pointer should be to a valid property. If the property requested is
unavailable, the plug-in can return NULL for the pointer.

kSPAdaptersAcquireSuiteHostSelector
kSPAdaptersReleaseSuiteHostSelector
The last two selectors need to be handled only if the adapter allows plug-ins
to provide function suites that are stored in PICA’s main suite list and identi-
fied by export properties (’expt’). If PICA needs such a suite and the plug-in
providing it is currently unavailable, the plug-in’s adapter will be called with
an acquire suite host selector. The information about the suite to be acquire
is in the message data structure:

/* for Suites selectors */

struct SPSuiteList *suiteList;

struct SPSuite *suite;

struct SPPlugin *host; /* plug-in hosting the suite, to be

aquired/released by adapter */

void *suiteProcs; /* returned here if reallocated */

long acquired; /* returned here */

Given the suiteList and suite fields, you can obtain the name, version, and
other information about the suite to be acquired. The plug-in that provides
the suite and that must be acquired is indicated in the host field. It may be
that knowing the host plug-in provides enough information about the suite
for it to be acquired, in which case the suite and suiteList fields are unneces-
sary. If reloading the plug-in changes the suite’s location in memory, a
pointer to the reallocated suite can be returned in the suiteProcs pointer. If
the loading process merely restores the function pointers in an existing
memory block, NULL may be returned for the suiteProcs pointer. If the suite
acquire is successful, acquired should be set to true; acquired should be set
to false if for some reason acquiring the suite host fails.

When a suite made available through an adapter has been released by all
plug-ins, the adapter will receive the release suite host selector. This indi-
cates that the adapter should unload the plug-in providing the suite from
memory. The information about the released suite is in the same fields as
the adapter acquire suite information.
The PICA API 44

The SPAdapters Suite
SPAdapters Suite Functions

AllocateAdapterList() Create a new adapter list

SPAPI SPErr AllocateAdapterList(struct SPStringPool *stringPool, SP-
AdapterListRef *adapterList);

Allocates a new list of SP adapters, returned in adapterList. Adapter names
added to the new adapter list will be stored in the specified stringPool.

You can also use PICA’s main adapter list, available through the SPRuntime
suite. See the discussion on PICA lists in the chapter, "The PICA Core."

FreeAdapterList() Dispose of an adapter list

SPAPI SPErr FreeAdapterList(SPAdapterListRef adapterList);

Disposes of the specified adapter list and any entries in it. The adapter list
was created with the AllocatedAdapterList() function.

See the discussion on PICA lists in the chapter, "The PICA Core."

AddAdapter() Add a new an adapter to a list

SPAPI SPErr AddAdapter(SPAdapterListRef adapterList,

struct SPPlugin *host, char *name, long version,

SPAdapterRef *adapter);

Adds an adapter to the indictated adapterList. Pass NULL to use PICA’s main
adapter list. The host is a reference to the plug-in adding the adapter. The
name is a C string identifying the adapter. Plug-ins added by the adapter
will use this string to identify their host. Only the latest version of an
adapter will be allowed to startup plug-ins. A reference to the added
adapter will be returned. If a plug-in adds more than one adapter, it should
save this value and use it to determine which adapter is being sent a
message. If the plug-in only adds one adapter, you can pass NULL for
adapter reference.

sSPAdapters->AddAdapter(nil, message->d.self,

"MYAPP Legacy Plug-in Adapter", 1, NULL);

SPFindAdapter() Find an adapter by name

SPAPI SPErr SPFindAdapter(SPAdapterListRef adapterList, char *name,

SPAdapterRef *adapter);

Get a reference to the adapter identified by name.

See the discussion on PICA lists in the chapter, "The PICA Core."
The PICA API 45

The SPAdapters Suite
NewAdapterListIterator() Create an iterator to traverse a list

SPAPI SPErr NewAdapterListIterator(SPAdapterListRef adapterList,

SPAdapterListIteratorRef *iter);

Returns an iterator to access an adapter list. The iterator is set to the first
adapter in the list.

See the discussion on PICA lists in the chapter, "The PICA Core."

NextAdapter() Advance to the next entry in a list

SPAPI SPErr NextAdapter(SPAdapterListIteratorRef iter,

SPAdapterRef *adapter);

Advances the list iterator to the next adapter in the list. When the last
adapter has been reached, this function will return NULL.

See the discussion on PICA lists in the chapter, "The PICA Core."

DeleteAdapterListIterator() Dispose of an adapter list iterator

SPAPI SPErr DeleteAdapterListIterator(SPAdapterListIteratorRef iter
);

When a list iterator is no longer needed it should be disposed.

See the discussion on PICA lists in the chapter, "The PICA Core."

GetAdapterHost() Get the plug-in hosting an adapter

SPAPI SPErr GetAdapterHost(SPAdapterRef adapter,

struct SPPlugin **plugin);

Returns a reference to the plug-in that added adapter in plugin. You might
want this reference to send the adapter a message.

GetAdapterName() Get the identifier string of an
adapter

SPAPI SPErr GetAdapterName(SPAdapterRef adapter, char **name);

Get a pointer to the name of an adapter, which is used to identify it. The
string should not be modified.

To determine how to call a plug-in you need to first identify its adapter. For
instance, plug-ins added by PICA’s built-in adapter have the identification
string:

#define kSPSweetPea2Adapter"Sweet Pea 2 Adapter"

To verify that a message could be sent to a plug-in, you would do this:
The PICA API 46

The SPAdapters Suite
SPErr error;

SPPluginRef pluginToCall;

SPAdapterRef pluginsAdapter;

char *adapterName;

long adapterVersion;

error = sSPPlugins->GetPluginAdapter(pluginToCall, &pluginsAdapter
);

error = sSPAdapters->GetAdapterName(pluginsAdapter, &adapterName);

if (strcmp(adapterName, kSPSweetPea2Adapter) == 0) {

// it is a PICA plug-in, call it as such with sSPInterface.

} else if (strcmp(adapterName, "MYAPP Legacy Plug-in Adapter") ==
0) {

// it is an adapted plug-in, call it with the adapter’s

// interface suite

error = sSPAdapters->GetAdapterVersion(pluginsAdapter,

&adapterVersion);

if (adapterVersion == 1) {

// use one hypothetical interface suite

} else if (adapterVersion == 2) {

// use another hypothetical interface suite

}

}

GetAdapterVersion() Get the version of an adapter

SPAPI SPErr GetAdapterVersion(SPAdapterRef adapter, long *version);

Get the version of an adapter

To determine how to call a plug-in you need to first identify its adapter. You
may need to further identify it by its version. For instance, plug-ins added by
PICA’s built-in adapter currently have the version:

#define kSPSweetPea2AdapterVersion1

See the code example in GetAdapterName().
The PICA API 47

7The SPBasic Suite
Chapter 7 - The SPBasic Suite

About the SPBasic Suite
API functions provided by PICA and host applications are organized into
related groups called suites. The SPBasic suite is how plug-ins get to the rest
of the suite universe. It is the bootstraps by which a plug-in pulls itself up:
plug-ins use it to acquire and release all the other suites that they need.

A suite is a structure filled with function pointers. Before any API function
can be used, its suite must be acquired using a function in the SPBasic Suite.
Acquiring a suite returns a pointer to a structure filled with valid function
pointers. When a suite is no longer needed it should be released, also done
with a function in the basic suite.

The SPBasic Suite also provides a function to indicate that a suite function is
no longer valid. Plug-ins adding suites will use that function when they are
unloaded.

Accessing the Suite
The SPBasic suite is a part of plug-in data passed in the message data passed
to a plug-in. It can be used from the message data structure like this:

message->d.basic->function()

or, to make reading easier, assigned to a variable and used through it:

SPBasicSuite sBasic = message->d.basic;

sBasic->function()

While there is really no need to acquire it, as with any suite there are defini-
tions for doing so.

The basic suite is referred to as:

#define kSPBasicSuite "SP Basic Suite"

with the version constant:

#define kSPBasicVersion 2

It is acquired with the basic suite (basically, using itself) as follows:

SPBasicSuite *sBasic2;

error = message->d.basic->AcquireSuite(kSPBasicSuite,

 kSPBasicVersion, &sBasic2);

if (error) goto error;

or

error = sBasic->AcquireSuite(kSPBasicSuite, kSPBasicVersion,
&sBasic2);
The PICA API 48

The SPBasic Suite
if (error) goto error;
The PICA API 49

The SPBasic Suite
What Is a Suite?
A function suite is simply a list of function pointers defined in a standard
structure:

typedef struct {

 SPAPI AIFixed (*FixedRnd) (void);

 SPAPI void (*SetRndSeed) (long seed);

 SPAPI long (*GetRndSeed) (void);

} AIRandomSuite;

Either the host application or a plug-in creates this table by setting the func-
tion pointers to valid routine addresses. This happens when the suite is
acquired. When a suite provide by a plug-in is unavailable, the function
pointer will set to the SPBasic suite function, Undefined().

Acquiring and Releasing Suites
Before the functions of a suite can be used the suite must be acquired. When
the suite is no longer needed it is released. Suites are acquired when the
plug-in has determined the selector type and released when the appropriate
action has been taken. The SPBasic suite provides the functions to acquire
and release suites.

Every suite is identified by a suite name (a C string) and version (integer)
used to acquire a suite. A suite may exist in several versions with different
functionality, so a plug-in must acquire the appropriate one. These identi-
fiers are found in the header file for the suite, e.g. “AIRandom.h” for the
random suite above.

To acquire a suite, a plug-in uses the AcquireSuite() function of the SPBasic
Suite and the identifiers of the desired suite. Since a suite is a function
pointer filled structure, a pointer to that structure must be declared. A
pointer to the acquired suite structure is returned in that pointer:

SPErr error;

SPBasicSuite *sBasic = message->d.basic;

AIRandomSuite *sRandom;

sBasic->AcquireSuite(kAIRandomSuite, kAIRandomVersion, &sRandom);

When finished, the suite is released using the suite identifiers:

sBasic->ReleaseSuite(kAIRandomSuite, kAIRandomVersion);

Using a Suite Function
The C language allows a program to call a function from a variable, essen-
tially jumping to a memory location defined at runtime. To call a function in
a suite, use the following syntax:

someNumber = sSomeSuite->SomeSuiteFunction();

What this is doing is finding the structure member SomeSuiteFunction(),
getting a function address at that location, setting up the stack appropri-
ately, and jumping to the function. Thanks to the C language, all this is
hidden when actually writing your plug-in code.

Attempting to use a function from a suite that has not been acquired may
cause your plug-in to crash.

When Suites Should Be Acquired
Do not acquire or release suites when PICA’s access (reload and unload) and
property messages are received. This is because suites may be unavailable at
The PICA API 50

The SPBasic Suite
these times. The exception to this is that PICA’s built suites will be available
and can be used. The SPBlock suite, for instance, can be used to allocate
memory for an SPProperties request.

The sample code accompanying this document provides a routine that
acquires and releases all needed suites en mass, rather than individually. This
means that suites are at times acquired even if they aren’t going to be used.
As long as they are released, this is usually acceptable.

At the plug-in shutdown messsage, you should avoid doing this mass acquire
and acquire only the suites needed to shut down the plug-in. For instance, a
plug-in might free memory and save preferences, requiring the blocks and
preferences suites. There is no need to acquire a raster access suite at this
time. The reason for treading lightly at shutdown is to avoid acquiring suites
provided by plug-ins that have already been shutdown. Such an action will
be successful (the plug-in is restarted), but is certainly less efficient than it
needs to be.
The PICA API 51

The SPBasic Suite
SPBasic Suite Functions

AcquireSuite() Acquire a suite of functions

SPAPI SPErr AcquireSuite(

char *name,

long version,

void **suiteProcs);

Acquiring a suite returns a pointer to a valid set of function addresses in
suiteProcs. The identifiers of the suite are passed in the name argument and
the version argument.

The name and version identifiers for a suite are found in its associated
header file. When a suite is acquired through the SPBasic suite, the latest
available version will be supplied.

The following code sample shows how to acquire the random number suite:

AIRandomSuite *sRandom;
error = message->d.basic->AcquireSuite(kAIRandomSuite,
 kAIRandomVersion, &sRandom);
if (error) goto error;

See also: ReleaseSuite()
The SPSuites Suite chapter

ReleaseSuite() Release a function suite that is no
longer needed.

SPAPI SPErr ReleaseSuite (

char *name,

long version);

For efficiency, PICA keeps track of which suites are currently being used.
When you are done using a suite, you should release it. This allow PICA to
unload suite providing plug-ins if no one is using their suites.

The suite identifiers are passed to ReleaseSuite(). The error returned by the
function can be ignored.

message->d.basic->ReleaseSuite(kAIRandomSuite, kAIRandomVersion);

See also: AcquireSuite()
The SPSuites Suite chapter

Undefined() Assinged to function pointers of a
suite when its providing plug-in is

unloaded.

SPAPI SPErr Undefined (

void);

When a plug-in providing a suite is unloaded from memory, its suite pointers
become invalid. They should be set to this function pointer to indicate this.
The PICA API 52

The SPBasic Suite
When the plug-in is reloaded the suite functions can be reassigned to valid
functions.

UnloadFunctions(SPBasic *sBasic) {

mySuite->function1 = sBasic->Undefined;

mySuite->function2 = sBasic->Undefined;

mySuite->function3 = sBasic->Undefined;

}

See also: The SPSuites Suite chapter
The PICA API 53

8The SPBlocks Suite
Chapter 8 - The SPBlocks Suite

About the SPBlocks Suite
The functions in this suite are used to request, release, and resize blocks of
memory. They are analagous to the standard C library memory allocation
routines or Macintosh Toolbox pointer routines. Using these calls will make
porting a plug-in to different platforms easier. In some cases, the plug-in’s
host may expect memory allocated in a certain manner and the use of these
calls may be required.

Accessing the Suite
The SPBlocks Suite is referred to as:

#define kSPBlocksSuite "SP Blocks Suite"

with the version constant:

#define kSPBlocksSuiteVersion 2

It is acquired with the Basic Suite as follows:

SPBlocksSuite *sSPBlocks;

error = sSPBasic->AcquireSuite(kSPBlocksSuite,

kSPBlocksSuiteVersion, &sSPBlocks);

if (error) goto error;
The PICA API 54

The SPBlocks Suite
SPBlocks Suite Functions

AllocateBlock() Allocate a new block of memory

SPAPI SPErr AllocateBlock (long size, char *debug, void **block);

This call is similar to the standard C library malloc() routine and the Macin-
tosh Toolbox NewPtr(). It allocates a block of size bytes and returns a
pointer block to the beginning of the memory. If non-NULL, the C string
pointed to by debug is used to tag the block if a development version of the
PICA host application is available. Otherwise it is ignored.

The following example would create a block of memory for storing a block
of text:

char *text;

error = sSPBlocks->AllocateBlock(kStartTextSize, &text);

if (error) goto error;

If the function fails due to lack of memory, it will return kSPOutOfMemoryErr.

See also: DisposeBlock()
ReallocateBlock()

FreeBlock() Release a block of memory allocated
by the AllocateBlock() function

SPAPI SPErr FreeBlock(void *block);

FreeBlock() is the opposite of AllocateBlock() and is similar to standard C
library free() function and the Macintosh Toolbox DisposePtr(). The memory
pointed to by block is returned to the application heap.

if (text != NULL) {

sBlock->DisposeBlock(text);

text = NULL;

}

See also: AllocateBlock()

ReallocateBlock() Change the size of a block previously
allocated with AllocateBlock()

SPAPI SPErr ReallocateBlock(void *block, long newSize, void **new-
Block);

The original memory pointer is passed in for block. The desired size for the
block is specified by newSize. The reallocated memory pointer will be
returned in the newBlock pointer.

This function is similar to realloc() and SetPtrSize(). ReallocateBlock() will
try to increase the size of the block without changing its location. If there is
not room on the heap, the block will be moved and the new location
returned in the newBlock argument.
The PICA API 55

The SPBlocks Suite
if (text != NULL) {

error = sSPBlock->ReallocateBlock(text,

kStartTextSize + kTextBlockSize, &text);

if (error) goto error;

}

If the function fails due to lack of memory, it will return kOutOfMemoryErr.

See also: AllocateBlock()
DisposeBlock()
The PICA API 56

9The SPCaches Suite
Chapter 9 - The SPCaches Suite

About the SPCaches Suite

PICA plug-ins are intended to move in and out of memory as necessary,
allowing a small a memory footprint as desired. By default, PICA will keep in
memory, or cache, loaded plug-ins until the host application heap has been
filled and then unload them. The unloading of cached plug-ins from memory
beyond this simple strategy is handled by the host using the single function
in the SPCaches suite.

Accessing the Suite
The SPCaches suite is referred to as:

#define kSPCachesSuite "SP Caches Suite"

with the version constant:

#define kSPCachesSuiteVersion 2

It is acquired with the SPBasic suite as follows:

SPCachesSuite *sSPCaches;

error = sSPBasic->AcquireSuite(kSPCachesSuite,

kSPCachesSuiteVersion, &sSPCaches);

if (error) goto error;
The PICA API 57

The SPCaches Suite
SPAdapters Suite Functions

SPFlushCaches() Create a new adapter list

SPAPI SPErr SPFlushCaches(SPFlushCachesProc flushProc, long
*flushed);

The single function in this suite causes a message to be sent to all plug-in
adapters telling them to flush (unload) any unused plug-ins from memory.
The function flushProc is used to determine which plug-ins to unload. The
return value flushed indicates the number of plug-ins flushed from memory.
It is unlikely that a plug-in will need to call this function.

Each adapter will call flushProc for any plug-ins that it can unload, returning
control of the unload decision to the original caller of SPFlushCaches(). The
original caller returns whether or not a plug-in should be flushed. The flush
function prototype is:

typedef SPErr (*SPFlushCachesProc)(char *type, void *data, long
*flushed);

The type and data are set by the adapter. The type is a C-style string which
indicates the type of the plug-in and the data structure contents. The flush-
Proc uses this information to determine whether the plug-in should be
unloaded. If it is to be removed, true is returned in the flushProc’s flushed
argument. The adapter actually unloads the plug-in from memory.

Figure 1 show the flow of control for the flush process:

Figure 1 - PICA’s Plug-in Flush Process

The simplest possible flushProc would ignore the type and data contents and
always return true. This would for a flush of all possible plut-ins.

SPErr FlushAllCachesProc(char *type, void *data, long *flushed) {

*flushed = true;

}

The flushProc should respect the type and data of the available adapters.
This information should be available in the header files used to build
adapters.

1. Someone calls SPFlushCaches() with a flushProc
(Control is in the original caller of SPFlushCaches())

2. Suite PEA sends each of adapter a flush message
that includes the flushProc.
(Control is in Suite PEA, wihin the host app)

3. An adapter puts information on one of its plug-ins in
a data structure and calls the flushProc with this
information and an identifier.
(Control is in the the adapter, which maybe a plug-in)

4. The flushProc uses the identifier to determine the
structure contents. It uses the data to determine if the
plug-in should be unloaded, returning true or false.
(Control is in the original caller)

5. The adapter unloads the plug-in if necessary.
The adapter repeats 3 for each of its plug-ins.

(Control is in the the adapter)

Repeat 2 for each adapter

6. Return the flush count to the original caller
(Control is returned to the original caller of
SPFlushCaches())

Suite PEA

void UnloadPlugins (void)
{

long flushed;

SPFlushCaches(
MyFlushProc,

 &flushed);
}

MyPluginFlushProc(...)
{
*flushed = true;
return kSPNoErr;
}

SP Adapter

Plug-in Adapter

1

2

3

4

SPFlushCaches() {

} ;6
The PICA API 58

10The SPFiles Suite
Chapter 10 - The SPFiles Suite

About the SPFiles Suite
The SPFiles suite is used to access PICAs file list. This list is create at startup
and contains references to every file in the plug-in folder of the host appli-
cation. This includes resolved file and folder aliases if the host platform
supports this feature.

PICA uses the file list to scan for its plug-ins. It maintains the file list and
provides a suite to access it to avoid redundant directory scans. Adapters
looking for their own plug-ins and PICA plug-ins looking for support files
can scan the list to locate relevant files rather than walking platform direc-
tory structures on their own. By using it, they avoid repeatedly walking the
directory hierarchy and ensure consistent behavior

Accessing the Suite
The SPFiles suite is referred to as:

#define kSPFilesSuite "SP Files Suite"

with the version constant:

#define kSPFilesSuiteVersion 3

It is acquired with the SPBasic suite as follows:

SPFilesSuite *sSPFiles;

error = sSPBasic->AcquireSuite(kSPFilesSuite,

kSPFilesSuiteVersion, &sSPFiles);

if (error) goto error;

Platform File Specifications
PICA uses a SPPlatformFileSpecification to reference a file. This structure is
specific to the platform on which PICA is running. The Macintosh and
Windows structures are:

#ifdef MAC_ENV

typedef struct { /* identical to FSSpec */

short vRefNum;

long parID;

unsigned char name[64];

} SPPlatformFileSpecification;

#endif

#ifdef WIN_ENV

typedef struct {

char path[300];

} SPPlatformFileSpecification;

#endif
The PICA API 59

The SPFiles Suite
SPFiles Suite Functions

AllocateFileList() Create a new file list

SPAPI SPErr AllocateFileList(SPFileListRef *fileList);

Allocates a new list of SP files, returned in fileList.

You can also use PICA’s main file list, available through the SPRuntime suite.
See the discussion on PICA lists in the chapter, "The Core."

FreeFileList() Dispose of a file list

SPAPI SPErr FreeFileList(SPFileListRef fileList);

Disposes of the specified fileList and any entries in it. The file list was
created with the AllocatedFileList() function.

See the discussion on PICA lists in the chapter, "The Core."

AddFiles() Add a new file or files to a list

SPAPI SPErr AddFiles(SPFileListRef fileList,

SPPlatformFileSpecification *file);

This function adds a file or files to the indicated file list. If file specifies an
individual file, it will be added to the list. If file specifies a directory, the
directory will be recursively searched and all files in it will be added to the
file list.

NewFileListIterator() Create an iterator to traverse a list

SPAPI SPErr NewFileListIterator(SPFileListRef fileList,

SPFileListIteratorRef *iter);

Returns an iterator to access a file list. The iterator is set to the first file in
the list.

See the discussion on PICA lists in the chapter, "The Core."

NextFile() Advance to the next entry in a list

SPAPI SPErr NextFile(SPFileListIteratorRef iter,

SPFileRef *file);

Advances the list iterator to the next file in the list. When the last file has
been reached, this function will return NULL.

See the discussion on PICA lists in the chapter, "The Core."
The PICA API 60

The SPFiles Suite
DeleteFileListIterator() Dispose of a file list iterator

SPAPI SPErr DeleteFileListIterator(SPFileListIteratorRef iter);

When a list iterator is no longer needed it should be disposed.

See the discussion on PICA lists in the chapter, "The Core."

GetFileSpecification() Get the platform file specification of
a file list entry

SPAPI SPErr GetFileSpecification(SPFileRef file,

SPPlatformFileSpecification *fileSpec);

Fills in the caller supplied file specification pointed to by *fileSpec for the
indicated file.

GetFileInfo() Get platform information about a
file list entry

SPAPI SPErr GetFileInfo(SPFileRef file, SPPlatformFileInfo *info);

Fills in the caller supplied file info structure info with platform file informa-
tion on the file list entry file.

The attibutes for a file are platform dependent:

#ifdef MAC_ENV

typedef struct {

unsigned long attributes;

unsigned long creationDate;

unsigned long finderType;

unsigned long finderCreator;

unsigned short finderFlags;

} SPPlatformFileInfo;

#endif

#ifdef WIN_ENV

typedef struct {

unsigned long attributes;

unsigned long lowCreationTime;

unsigned long highCreationTime;

char *extension;

} SPPlatformFileInfo;

#endif

The file’s attributes are standard platform data. Information about the file
attributes is available from the platform vendor.
The PICA API 61

11The SPInterface Suite
Chapter 11 - The SPInterface Suite

About the SPInterface Suite
One of the services which PICA provides is the ability for plug-ins to call
other plug-ins. One way to do this is to send the plug-in a message through
its main entry point. The same functions that PICA and the host application
use to do this are provided to plug-ins in the SPInterface suite.

The SPPlugin and SPAccess suites can be used in conjunction to achieve a
similar result. The SPInterface suite provides a more convenient approach.

Accessing the Suite
The SPInterface suite is referred to as:

#define kSPInterfaceSuite "SP Interface Suite"

with the version constant:

#define kSPInterfaceSuiteVersion 2

It is acquired with the SPBasic suite as follows:

SPInterfaceSuite *sSPInterface;

error = sSPBasic->AcquireSuite(kSPInterfaceSuite,

kSPInterfaceSuiteVersion, &sSPInter-
face);

if (error) goto error;

Calling Other Plug-ins
The SPInterface suite has three functions used to call other plug-ins with a
specified message. The “About Plug-ins” feature of Adobe Illustrator is
written using these calls to send it’s plug-ins an about message.

SPAPI SPErr SendMessage(SPPluginRef plugin, char *caller,

char *selector, void *message, SPErr *result);

SPAPI SPErr SetupMessageData(SPPluginRef plugin, SPMessageData
*data);

SPAPI SPErr EmptyMessageData(SPPluginRef plugin, SPMessageData
*data);

The functions might be used on a specific plug-in whose functionality your
plug-in would like to use or in conjunction with the plug-in list to call all
plug-ins.

The setup and empty functions bracket the SendMessage() function. The
setup function will fill in an SPMessageData structure with the basic suite,
the globals pointer kept by PICA for the plug-in, and the plug-in’s SPPlug-
inRef reference (its reference to itself). If the message you will be sending to
a plug-in requires other information in its data structure, the calling plug-in
is responsible for setting it up. The empty function will undo the actions of
The PICA API 62

The SPInterface Suite
the setup call: releasing the basic suite and storing the globals pointer in
case it was changed.

SendMessage() will load the specified plug-in into memory if necessary and
pass the message action and data structure to its entry point. To the called
plug-in it is as if the main application had done this. Here is how the process
works:

SPInterfaceMessage aboutMessage;

SPErr error = 0, result = 0;

error = sSPInterface->SetupPluginData(plugin, &aboutMessage.d);

if (error) goto error;

error = sSPInterface->CallPlugin(plugin, kSPInterfaceCaller,

kSPInterfaceAboutSelector, &pluginMessage, &result);

if (error) goto error;

error = sSPInterface->EmptyPluginData(plugin, &aboutMessage.d);

if (error) goto error;

Before using the SPInterface functions to send a message, the calling plug-in
should use the SPAdapter suite GetAdapterName() call to determine that it is
a PICA plug-in.

Calling Non-PICA Plug-ins
The SPInterface suite functions will fail if they are used on a non-PICA plug-
in. To call such a plug-in, you would instead use an analagous interface suite
provided by the plug-in adapter hosting it. For instance, the Adobe Illus-
trator application uses a suite provided by an adapter plug-in to send
messages to plug-ins written for Illustrator 5.5:

typedef struct {

AIAPI AIErr (*SetupAIEffect50)(SPPluginRef plugin, AIEffect50
*pb);

AIAPI AIErr (*EmptyAIEffect50)(SPPluginRef plugin, AIEffect50
*pb);

AIAPI AIErr (*SetupAIPluginPB55)(SPPluginRef plugin,
AIPluginPB55 *pb);

AIAPI AIErr (*EmptyAIPluginPB55)(SPPluginRef plugin,
AIPluginPB55 *pb);

AIAPI long (*CallPlugin50)(SPPluginRef plugin, AIEffect50 *pb);

AIAPI long (*CallPlugin55)(SPPluginRef plugin, AIPluginPB55 *pb
);

} AIBackwardSuite;

In this case, there is a similarity between the AIBackward and SPInterface
suites. This may or may not be true. Check the information provided with
the adapter’s suite for how to access it’s plug-ins.

See the SPAdapters suite chapter, GetAdapterName() function to see how to
determine the adapter supporting a plug-in.
The PICA API 63

The SPInterface Suite
SPInterface Suite Functions

SendMessage() Send a plug-in a message

SPAPI SPErr SendMessage(SPPluginRef plugin, char *caller, char *se-
lector, void *message, SPErr *result);

Calls the specified plug-in with the given message action (caller and selector)
and message data structure, message. The value returned by the called plug-
in is in result.

SendMessage() will load the specified plug-in if necessary and pass the caller
and selector and message data to its main entry point. To the called plug-in
it is as if the main application had done this.

The setup and empty plugin data functions bracket the SendMessage() func-
tion. See the example in the Calling Other Plug-ins section above.

See also: SetupMessageData()
EmptyMessageData()

SetupMessageData() Prepares an SPMessageData
structure for SendMessage()

SPAPI SPErr SetupMessageData(SPPluginRef plugin, SPMessageData *da-
ta);

The setup function will fill in an SPMessageData structure with the basic
suite, the globals pointer kept by the PICA for the plug-in, and the plug-in’s
SPPluginRef reference (a reference to itself).

If the message which you will be sending a plug-in requires other informa-
tion in the message data structure, you are responsible for setting it.

See also: EmptyMessageData()
SendMesssage()

EmptyMessageData() Clean up an SPMessageData
structure after SendMessage()

SPAPI SPErr EmptyMessageData(SPPluginRef plugin, SPMessageData *da-
ta);

The empty function will undo the actions of the setup message function.

The basic suite is released and the globals pointer is stored in case it was
changed.

See also: SetPluginGlobals()
SetupMessageData()
SendMesssage()
The PICA API 64

The SPInterface Suite
StartupExport() Start a plug-in exporting a suite

SPAPI SPErr StartupExport(SPPluginListRef pluginList, char *name,
long version,long *started);

This function handles a special case of sending a plug-in a message:
requesting that the plug-in exporting a suite be sent the startup message.
name and version indicate the desired suite. Plug-ins in the indicated plugin-
List will be scanned for the appropriate export property. If found, the plug-
in will exporting the suite will be started and true returned in the argument
started. If not found, false will be returned in started.
The PICA API 65

12The SPPlugins Suite
Chapter 12- The SPPlugins Suite

About the SPPlugins Suite
Functions in this suite are used to access the plug-ins of which the Suite PEA
is aware. This includes its own plug-ins and the plug-ins added by API
adapters. One plug-in could use the functions to determine the host adapter
of another plug-in so that it could send the second plug-in a message. An
adapter could use the functions to store references to its plug-ins.

Accessing the Suite
The SPPlugins suite is referred to as:

#define kSPPluginsSuite "SP Plugins Suite"

with the version constant:

#define kSPPluginsSuiteVersion 2

It is acquired with the basic suite as follows:

SPPluginsSuite* sSPPlugins;

// Use the Basic Suite as describe in the chapter of that name

// and to acquire the suite

error = sBasic->AcquireSuite(kSPPluginsSuite,

kSPPluginsSuiteVersion, &sSPPlugins);

if (error) goto error;

Plug-in States
Suite PEA plug-ins have several states that can be inspected and set using
the plug-in suite. These states will most likely be of interest to API adapters
supporting their own plug-ins. The two states are started and broken.

The plug-in broken state indicates whether a plug-in is available to receive
messages. If it is “broken” some error has occurred indicating it has become
unavailable. An example of what might cause a plug-in to become broken is
moving a plug-in file from the plug-in folder after it has started up.

The started state indicates whether a plug-in has received the interface
startup message. Once a plug-in has returned after receiving the message, its
started state will be set to true.

Host Plug-ins
Some "plug-ins" that ship with the host application are actually built into
the application; these are called host plug-ins. A host might use a plug-in to
add its suites to Suite PEA. This state can be determined by checking
whether the plug-in has a host entry point. If the host entry point is non-
NULL, the plug-in is a part of the application. If the host entry point is NULL,
the plug-in is an external file.
The PICA API 66

The SPPlugins Suite
SPPlugins Suite Functions

AllocatePluginList() Create a new plug-in list

SPAPI SPErr AllocatePluginList(struct SPStringPool *stringPool,

SPPluginListRef *pluginList);

Allocates a new list of SP plug-ins, returned in pluginList. Plug-in identifica-
tion strings such as their host adapter are searched for in the specified
stringPool.

You can also use Suite PEA’s main plug-in list, available through the SPRun-
time suite. See the discussion on Suite PEA lists in the chapter, "The Suite
PEA Core."

FreePluginList() Dispose of an plugin list

SPAPI SPErr FreePluginList(SPPluginListRef pluginList);

Disposes of the specified plugin list and any entries in it. The plugin list was
created with the AllocatedPluginList() function.

See the discussion on Suite PEA lists in the chapter, "The Suite PEA Core."

AddPlugin() Add a new an plug-in to a list

SPAPI SPErr SPAddPlugin(SPPluginListRef pluginList,

SPPlatformFileSpecification *fileSpec, PIPropertyList
*PiPL, char *adapterName, void *adapterInfo, SPPluginRef
*plugin);

Adds a plug-in to the indictated pluginList. Pass NULL to use Suite PEA’s
main plug-in list. The fileSpec is a reference file containing the plug-in code
and resources. The PiPL is a pointer to a structure containing the plug-in’s
properties. The adapterName is an identifier for the adapter adding the
plug-in. When a plug-in is to be called, this string is to identify their host
and thus the correct way to call it. The adapterInfo is used by an adapter
adding the plug-in to store relvant information about the it. The contents of
the structure to which it points are determined by the adding adapter and
might contain version information, options, or other data. A reference to
the added plugin will be returned.

NewPluginListIterator() Create an iterator to traverse a list

SPAPI SPErr NewPluginListIterator(SPPluginListRef pluginList,

SPPluginListIteratorRef *iter);

Returns an iterator to access an plug-in list. The iterator is set to the first
plug-in in the list.

See the discussion on Suite PEA lists in the chapter, "The Suite PEA Core."
The PICA API 67

The SPPlugins Suite
NextPlugin() Advance to the next entry in a list

SPAPI SPErr NextPlugin(SPPluginListIteratorRef iter,

SPPluginRef *plugin);

Advances the list iterator to the next plug-in in the list. When the last plug-
in has been reached, this function will return NULL.

See the discussion on Suite PEA lists in the chapter, "The Suite PEA Core."

DeletePluginListIterator() Dispose of an plug-in list iterator

SPAPI SPErr DeletePluginListIterator(SPPluginListIteratorRef iter);

When a list iterator is no longer needed it should be disposed.

See the discussion on Suite PEA lists in the chapter, "The Suite PEA Core."

GetHostPluginEntry() Get the entry point of a host
supplied plug-in

SPAPI SPErr GetHostPluginEntry(SPPluginRef plugin, void **host);

If the plugin has added directly by the host application, this function returns
the address of the entry point function in host. If the plug-in is a normal,
standalone file, host will be nil.

While most plug-ins are files seperate from the application, Suite PEA allows
its host application to add plug-ins directly to it. Host plug-ins have the same
entry point definition and are sent the same messages as normal plug-ins.
The main difference is that they aren’t unloaded from memory. The host
might use a host plug-in to add its suites or an adapter for an earlier version
of its API.

GetPluginFileSpecification() Get the file specification of a plug-in

SPAPI SPErr GetPluginFileSpecification(SPPluginRef plugin, SPPlat-
formFileSpecification *fileSpec);

Files in the SPPlatformFileSpecification fileSpec with the location of the
plug-in file.

A plug-in might want to know its location on the disk to access support files.
See the SPFiles suite chapter for more information.

GetPluginPropertyList() Get the property list of a plug-in

SPAPI SPErr GetPluginPropertyList(SPPluginRef plugin, SPPropertyLis-
tRef *propertyList);

Returns a reference to the plug-in’s property list in propertyList.
The PICA API 68

The SPPlugins Suite
See the SPProperties suite and Suite PEA PiPLs chapters for more information
on properties.

See also: FindPluginProperty()

GetPluginGlobals() Return the globals reference
stored for a plug-in

SPAPI SPErr GetPluginGlobals(SPPluginRef plugin, void **globals);

Suite PEA stores a 4 byte value for a plug-in in case it is unloaded. This func-
tion returns that value for the specified plug-in.

This is the same value passed in the globals field of the SPMessageData
structure.

See also: SetPluginGlobals()

SetPluginGlobals() Set the globals reference
stored for a plug-in

SPAPI SPErr SetPluginGlobals(SPPluginRef plugin, void *globals);

Sets the value of a plug-in stored globals data to *globals.

Suite PEA and any plug-in that calls another should store the returned
globals value in the SPMessageData structure in case it has been changed.

Usually the value of the SPMessageData field globals is a pointer to a globals
structure allocated once at startup. A globals structure could be reallocated
and the new pointer returned. Also, if the plug-in only needs four bytes of
data, the data could be that 4 byte value.

See also: GetPluginGlobals()

GetPluginStarted() Return a plug-in’s started state

SPAPI SPErr GetPluginStarted(SPPluginRef plugin, long *started);

Returns whether or not the plug-in has been started. True will be returned if
the plug-in has been sent the interface/startup message.

See also: SetPluginStarted()

SetPluginStarted() Set a plug-in’s started state

SPAPI SPErr SetPluginStarted(SPPluginRef plugin, long started);

Sets whether the plug-in has been started. This value is set to true if the
plug-in has been sent the interface/startup message.

A plug-in adapter would use this function; it is unlikely that other plug-ins
would.
The PICA API 69

The SPPlugins Suite
GetPluginBroken() Return a plug-in’s broken state

SPAPI SPErr GetPluginBroken(SPPluginRef plugin, long *broken);

Returns whether or not the plug-in is broken.

A broken setting of true indicates that a condition has occured that makes
the plug-in unavailable, for instance, its file being removed from the plug-
ins folder. A plug-in adapter would want to check this condition before it
calls one of its plug-ins.

See also: SetPluginBroken()

SetPluginBroken() Set a plug-in’s broken state

SPAPI SPErr SetPluginBroken(SPPluginRef plugin, long broken);

Sets whether or not the plug-in is broken.

A broken setting of true indicates that a condition has occured that makes
the plug-in unavailable, for instance, its file being removed from the plug-
ins folder. A plug-in adapter would set this condition if it encounters such a
situation; other plug-in are unlikely to use this function.

See also: SetPluginBroken()

GetPluginAdapter() Return a plug-in’s host adapter

SPAPI SPErr GetPluginAdapter(SPPluginRef plugin, SPAdapterRef *adapt-
er);

Gets a reference to the adapter of a plug-in.

This reference could be used to get the adapter name, allowing it to be
called correctly. See the description of GetAdapterName() for an example.

See also: GetAdapterName()

GetPluginAdapterInfo() Return a plug-in’s host adapter info

SPAPI SPErr GetPluginAdapterInfo(SPPluginRef plugin, void **adapter-
Info);

Gets the adapter information of a plug-in. A pointer to the plugin’s
adapter’s data structure is returned in adapterInfo.

This function is unlikely to be used by plug-ins other than adapters, since the
contents of the structure pointed to by adapterInfo are only known to it.
Other plug-ins are more likely to use an adapter provided suite of access
functions. For instance, the Adobe Illustrator application and adapters
provide these functions to access plug-in information:

AIAPI AIErr (*GetPluginOptions) (SPPluginRef plugin, long
*options);
The PICA API 70

The SPPlugins Suite
AIAPI AIErr (*SetPluginOptions) (SPPluginRef plugin, long
options);

See also: SetPluginAdapterInfo()

SetPluginAdapterInfo() Set a plug-in’s host adapter info

SPAPI SPErr SetPluginAdapterInfo(SPPluginRef plugin, void *adapterIn-
fo);

Sets the adapter information of a plug-in. The pointer adapterInfo to the
adapter’s data structure is stored with the indicated plugin.

This function is unlikely to be used by plug-ins other than adapters, since the
contents of the structure pointed to by adapterInfo are only known to it.

See also: GetPluginAdapterInfo()

FindPluginProperty() Find a property in a plug-in’s
property list

SPAPI SPErr FindPluginProperty(SPPluginRef plugin, PIType vendorID,
PIType propertyKey, long propertyID, PIProperty **p);

This function searches the indicated plugin’s property list for the property
specified by vendorID, propertyKey, and propertyID. If found, a pointer to
the property is returned in p.

If Suite PEA doesn’t find the property in the property list, it asks the plug-in
for it, with a properties caller/acquire property message. The plug-in may
ignore the request or it may manufacture the property and return it to Suite
PEA. In either case, Suite PEA adds the new (possibly NULL) property to the
plug-in’s property list. FindPluginProperty() will find the stored property on
subsequent calls without having to ask the plug-in (that is, it only asks the
plug-in once for a particular property).

Interpreting the property data is up to the plug-in calling the function. More
information on properties is found in the chapter "Suite PEA PiPLs".
The PICA API 71

13The SPProperties Suite
Chapter 13 - The SPProperties Suite

About the SPProperties Suite

Unlike PICA’s global lists, a properties list is associated with a plug-in. Each
plug-in’s list of properties is accessed with the SPProperties suite. If PICA, the
host application, or a plug-in needs to examine the elements of a plug-in’s
PiPL for some reason or find a particular property, it would use the functions
in this suite rather than repeatedly parsing the plug-ins property resource.
Properties are described in detail in the PICA Properties chapter.

Accessing the Suite
The SPProperties suite is referred to as:

#define kSPPropertiesSuite "SP Properties Suite"

with the version constant:

#define kSPPropertiesSuiteVersion 3

It is acquired with the SPBasic suite as follows:

SPPropertiesSuite *sSPProperties;

error = sSPBasic->AcquireSuite(kSPPropertiesSuite,

kSPPropertiesSuiteVersion, &sSPProperties
);

if (error) goto error;

SPProperties
Each property of a plug-in is added to the plug-ins SPProperties list. The list
can be iterated and references to the added properties accessed. Entries in a
property list, SPProperties, include the PIProperty structure and some addi-
tional information: a four-byte refcon value and a flag denoting whether
the property information is cacheable. The refcon can be used to store addi-
tional information about the property when it is added. The cacheable flag
indicates properties that will not change, so that the host can keep a cache
file of properties rather than read them from each plug-in file at startup.
The PICA API 72

The SPProperties Suite
SPProperties Suite Functions

AllocatePropertyList() Create a new property list

SPAPI SPErr AllocatePropertyList(SPPropertyListRef *propertyList);

Allocates a new list of SP properties, returned in propertyList.

Unlike PICA’s other lists, property lists are not global collections available
through the SPRuntime suite. Instead they are associated with a plug-in and
the returned value of this function would likely be assigned to a plug-in.

See the discussion on PICA lists in the chapter, "The Core."

FreePropertyList() Dispose of an property list

SPAPI SPErr FreePropertyList(SPPropertyListRef propertyList);

Disposes of the specified property list and any entries in it. The property list
was created with the AllocatedPropertyList() function.

See the discussion on PICA lists in the chapter, "The Core."

AddProperties() Add a list of properties

SPAPI SPErr AddProperties(SPPropertyListRef propertyList,

PIPropertyList *pList, long refCon, long cacheable);

Adds a list of properties, referenced by plist, to the indicated propertyList.
The refCon is a value which you can assign. The cacheable argument indi-
cates whether or not the property list is likely to change. Cacheable proper-
ties may be written to a cache file kept by the host rather than read from
the plug-in file. Each of the properties in the list is added as an SPProper-
tyRef.

The PIPropertyList would likely be read from a resource and then assigned
with this function.

AddProperty() Add a property to a list

SPAPI SPErr AddProperty(SPPropertyListRef propertyList, PIType ven-
dorID, PIType propertyKey, long propertyID, PIProperty
*p,

long refCon, long cacheable, SPPropertyRef *property);

Adds a single property to the indicated propertyList. The property is
described by the vendorID, propertyKey, propertyID, and property pointer p,
which are as described in the PICA properties chapter. The refCon is a value
which you can assign. The cacheable argument indicates whether or not the
property list is likely to change. Cacheable properties may be written to a
cache file kept by the host rather than read from the plug-in file. A refer-
ence to the added property is returned in property.
The PICA API 73

The SPProperties Suite
This function would be used, for instance, to assign a property returned by
an acquire properties messages sent to a plug-in.

FindProperty() Find a property

SPAPI SPErr FindProperty(SPPropertyListRef propertyList,

PIType vendorID, PIType propertyKey, long propertyID,

SPPropertyRef *property);

Get a reference to the property indicated by the vendorID, propertyKey,
propertyID. The propertyList is searched for the matching property and if
found, it is returned in property. Otherwise NULL is returned.

See the discussion on PICA lists in the chapter, "The Core."

NewPropertyListIterator() Create an iterator to traverse a list

SPAPI SPErr NewPropertyListIterator(SPPropertyListRef propertyList,

SPPropertyListIteratorRef *iter);

Returns an iterator to access a property list. The iterator is set to the first
property in the list.

See the discussion on PICA lists in the chapter, "The Core."

NextProperty() Advance to the next entry in a list

SPAPI SPErr NextProperty(SPPropertyListIteratorRef iter,

SPPropertyRef *property);

Advances the list iterator to the next property in the list. When the last
property has been reached, this function will return NULL in property.

See the discussion on PICA lists in the chapter, "The Core."

DeletePropertyListIterator() Dispose of an property list iterator

SPAPI SPErr DeletePropertyListIterator(SPPropertyListIteratorRef
iter);

When a list iterator is no longer needed it should be disposed.

See the discussion on PICA lists in the chapter, "The Core."

GetPropertyPIProperty() Get the plug-in hosting an adapter

SPAPI SPErr GetPropertyPIProperty(SPPropertyRef property, PIProperty
**p);

Returns a pointer, p, to the PIProperty structure for the indicated property
reference.
The PICA API 74

The SPProperties Suite
This structure is described in the "PiPLs" chapter.

GetPropertyRefCon() Get the property refcon

SPAPI SPErr SPGetPropertyRefCon(SPPropertyRef property, long *ref-
Con);

Get the SPProperty refcon, which is assigned when the property is added.
The meaning of this value is undefined, determined by who set it.

GetPropertyCacheable() Get whether the property
is cacheable

SPAPI SPErr GetPropertyCacheable(SPPropertyRef property,

long *cacheable);

Get whether the property is cacheable.

Cacheable properties are static and will not change. Because of this, cache-
able properties may be stored by the host in a cache file rather than read
from the plug-in file.

GetPropertyAllocatedByPlugin() Get whether or not the property
was allocated by the plug-in

SPAPI SPErr GetPropertyAllocatedByPlugin(SPPropertyRef property,

long *allocatedByPlugin);

Get whether or not the property was allocated by the plug-in. If the prop-
erty was provided by a plug-in in response to a acquire properties message,
this flag is true. If the property was read from a resource, this flag is false.
The PICA API 75

14The SPRuntime Suite
Chapter 14 - The SPRuntime Suite

About the SPRuntime Suite
The functions in this suite are used to request references to the main data
strucures (it lists and stringpool) used by the PICA plug-in manager. The data
structure suite functions take a reference to a list or pool, and to use the
appropriate PICA list, you would use a reference returned by one this suite’s
functions. That said, as a short cut you can pass NULL for a data structure
reference and PICA will use its list as a default.

See the chapter "The PICA Core" for more information on data structures
and their use.

Accessing the Suite
The SPRuntime Suite is referred to as:

#define kSPRuntimeSuite "SP Runtime Suite"

with the version constant:

#define kSPRuntimeSuiteVersion 2

It is acquired with the SPBasic suite as follows:

SPRuntimeSuite *sSPRuntime;

error = sSPBasic->AcquireSuite(kSPRuntimeSuite,

kSPRuntimeSuiteVersion, &sSPRuntime);

if (error) goto error;
The PICA API 76

The SPRuntime Suite
SPRuntime Suite Functions

GetRuntimeStringPool() Get PICA’s string pool

SPAPI SPErr GetRuntimeStringPool(SPStringPoolRef *stringPool);

Returns a reference to the string pool used by PICA to store suite names,
adapter names, and other strings.

GetRuntimeSuiteList() Get PICA’s suite list

SPAPI SPErr GetRuntimeSuiteList(SPSuiteListRef *suiteList);

Returns a reference to the suite list used by PICA to store its suites, including
those added by the application and plug-ins.

GetRuntimeFileList() Get PICA’s file list

SPAPI SPErr GetRuntimeFileList(SPFileListRef *fileList);

Returns a reference to the file list used by PICA. This list contains all the files
in the application specified plug-in folder and its sub-directories.

GetRuntimePluginList() Get PICA’s plug-in list

SPAPI SPErr GetRuntimePluginList(SPPluginListRef *pluginList);

Returns a reference to the plug-in list used by PICA. This list contains all the
PICA plug-ins and any added by an adapter.

GetRuntimeAdapterList() Get PICA’s adapter list

SPAPI SPErr GetRuntimeAdapterList(SPAdapterListRef *adapterList);

Returns the list of plug-in adapters used by PICA. This list will have PICA’s
built in adapter and any added by plug-ins.

GetRuntimeHostProcs() Get PICA’s host
supplied functions

SPAPI SPErr GetRuntimeHostProcs(SPHostProcs **hostProcs);

When PICA is initialized by the host application, it is supplied a block of
function pointers for host provided functionality. This allows it to use the
application’s resources, some of which are exposed to plug-ins. These include
memory routines (SPBlocks), notification routines, exception handling, and
string pool routines (SPStrings). The function pointers can be accessed with
GetRuntimeHostProcs().
The PICA API 77

The SPRuntime Suite
A plug-in isn’t likely to need the host functions, and instead will find it
easier to use the PICA suites. An exception to this is if the plug-in provides
an API adapter. In this case it will want to use two of the host functions,
startupNotify() and shutdownNotify(), which are defined as:

typedef void (*SPStartupNotifyProc)(SPPluginRef plugin, void *host-
Data);

typedef void (*SPShutdownNotifyProc)(SPPluginRef plugin, void *host-
Data);

The startup notification function is called by the adapter to inform it that a
plug-in is being started up. The plug-in and any data specified by the host is
passed by the function. The host application will use this to track the startup
process. One possible use of the plug-in startup notification is to display to
the user a list of plug-ins being loaded.

The shutdown notification sends the application the same information, but
when the plug-in is being shutdown. Its purpose is for the host application
to track the shutdown process, possibly providing additional feedback for
the user.
The PICA API 78

15The SPStrings Suite
Chapter 15 - The SPStrings Suite

About the SPStrings Suite
The functions in this suite are used to access string pools and their strings.
String pools can be created and deleted. Strings can be added to the pool.

Accessing the Suite
The SPStrings Suite is referred to as:

#define kSPStringsSuite "SP Strings Suite"

with the version constant:

#define kSPStringsSuiteVersion 2

It is acquired with the Basic Suite as follows:

SPStringsSuite *sSPStrings;

error = sSPBasic->AcquireSuite(kSPStringsSuite,

kSPStringsSuiteVersion, &sSPStrings);

if (error) goto error;

String Pools
A string pool is a simple string atomizer, providing an efficient central
storage space for C style strings. When a string is placed in the pool, PICA
first checks to see if it already exists. If so, a pointer to the existing pooled
string will be returned. If not, the string pool manager will copy the string
into the string pool and return a pointer to the copy.

The idea behind a string pool is that string equality tests can be reduced to
pointer equality tests if each string exists in one and only one place. To
compare two string pooled strings, you simply compare the pointers. If they
are the same, the strings are the same.

For example, if you store all suite names in a string pool, then looking for a
suite by name involves atomizing the name for which you’re looking and
then comparing the atomized string pointer to the atomized string pointers
in the suite list. If the search name is in the list, the process of atomizing it
will give you the same string pointer.
The PICA API 79

The SPStrings Suite
SPStrings Suite Functions

AllocateStringPool() Allocate a new string pool

SPAPI SPErr AllocateStringPool(SPStringPoolRef *stringPool);

This function creates a string pool reference and allocates an intial block of
memory for its strings.

FreeStringPool() Release memory occupied
by a string pool

SPAPI SPErr FreeStringPool(SPStringPoolRef stringPool);

The function frees any memory used by a string pool and makes the pool
reference invalid.

MakeWString() Add a string to a string pool

SPAPI SPErr MakeWString(SPStringPoolRef stringPool, char *string,

char **wString);

This function adds string to the indicated stringPool and returns an atom-
ized string pointer, wString. If the string doesn’t exist in the pool then
SPMakeWString() adds it and returns the new address. If the string has
already been added to the pool, a reference to the existing pooled string
will be returned.

char *gMyPooledName;

sSPStrings->MakeWString(nil, "Buckwheat", &gMyPooledName);

Note: In case you’re wondering, the ’W’ means ’wet’. If you put a string in
a pool, it is a wet string.
The PICA API 80

16The SPSuites Suite
Chapter 16 - The SPSuites Suite

About the SPSuites Suite
The SPSuites suite is used to access PICA’s suite list and obtain information
about entries in it. This list is created at startup and contains references to
every suite added by PICA, the host application, and plug-ins.

Suites are a pointer to a data structure, usually containing function pointers.
The functions generally haves some common purpose, such as accessing a
data type, and are used by plug-ins to interact with PICA, the host applica-
tion, and each other. In order to use a function in a suite, the suite must first
be acquired. More general information on suites is found in the chapters
"PICA Intro" and "The SPBasic Suite."

Functions to add new suites and acquire existing ones are found in the
SPSuites API and discussed here. Other functions for getting information on
a particular suite are also available.

Accessing the Suite
The SPSuites suite is referred to as:

#define kSPSuitesSuite "SP Suites Suite"

with the version constant:

#define kSPSuitesSuiteVersion 2

It is acquired with the basic suite as follows:

SPSuitesSuite *sSPSuites;

error = sSPBasic->AcquireSuite(kSPSuitesSuite,

kSPSuitesSuiteVersion, &sSPSuites);

if (error) goto error;

Plug-in Suites
The PICA API is made up of a number of function suites to manage a plug-in
API. These are supplemented by the host application’s suites, which a plug-in
is more likely to use. A plug-in can extend the API further by adding its own
suites. There is no difference between a suite supplied by the application
and one supplied by a plug-in.

Inherent in the design of early Adobe monolithic APIs is the assumption that
plug-ins are simple extensions of the application. Much as a central power
grid provides electricity to the public, the host application was the sole
provider of plug-in functionality. The single provider, one-way approach is
unsuitable for a growing and diversifying interface.

Sweet Pea is designed so that plug-ins can provide functionality as well,
putting electricity back into the system. Modern power systems allow for
independent production of electricity, supplemented by or added to the
The PICA API 81

The SPSuites Suite
central power source. A plug-in suite can add entirely new functionality to
the API for private or public use. It can correct errant behavior of an existing
suite or extend its functionality. Systems can be designed where a plug-in
suite replaces functionality of the host application with an alternate system.

To the acquirer, acquiring a suite provided by a plug-in is no different than
acquiring one provided by the application or PICA. Host suites are never
unloaded, though, while suites provided by plug-ins will be unloaded with
the plug-in. Acquiring a suite may cause its proividing plug-in to be loaded
into memory to make the suite available. A reference count is kept for each
suite. The count is incremented when it is acquired and decremented when it
is released. If a suite with a positive acquire count is provided by a plug-in,
its plug-in will not be unloaded. When a plug-in suite’s acquire count is 0, its
plug-in can be unloaded.

Suite Versions
Public information about a suite provides a name and an api version number
that define it. These are used with the SPBasic suite to acquire and release a
reference to the suite. There is one additional piece of information which is
used internally be PICA to define a suite: a subversion number.

The api (or major) version number indicates the functionality of a suite, indi-
cating its general purpose and behavior, constants, data types and functions;
in other words everything in the suite’s header file. If a major change to the
suite’s definition or behavior is made, the api version number would
changed. A simple rule of thumb is if the header file changes, then the API
version number changes. Sweet Pea tests API version numbers only for
equality, it assumes no continuum. That is, Sweet Pea does not think that
version 10 is newer than version 9. It also does not interpret ranges of bits
within the number. Suites are free to use any numbering scheme they want.

The internal, or implementation, version number is the way Sweet Pea
chooses between multiple occurrences of the same suite with the same API
version. It is intended for bug fixes or improvements in the implementation.
For instance, if a suite fixed a bug in a previous version but all other aspects
of it were the same, then the api version number would remain the same
while the subversion number would be incremented. Sweet Pea interprets
greater values as newer (better) versions. Sweet Pea provides a special
constant that means the latest version. You can use this when looking for a
suite.

#define kSPLatestInternalVersion 0

To succeed, a search for a suite must match the name and API version
number exactly. If you ask for the latest internal version number (the
common case), then it finds that. If you specify a real internal version
number, then that too must match exactly.

Suite Interface Files
A suite’s identifying name and api version constants should be available in a
public header file. Because the names and versions must match exactly, a
suite publisher must explicitly declare every version of a suite it supports.
The internal version needs to be documented, but will likely not be public.
Other definitions, such as error strings particular to a suite’s functions, are
also found in the include file. Finally, if the suite has related plug-in
messages they will also be defined. At the end are the suite functions. The
function pointers should be fully prototyped.
The PICA API 82

The SPSuites Suite
Supplying Multiple Suite Versions
For backward compatibility purposes it is desirable to provide multiple
versions of a suite. The convention for doing this is to provide versioned
constants for all api versions and then make one of them the default:

#define kAIPathStyleSuite "AI Path Style Suite"

#define kAIPathStyleSuiteVersion2 2

#define kAIPathStyleSuiteVersion3 3

#define kAIPathStyleSuiteVersion kAIPathStyleSuiteVersion3

There are many ways which a suite might be extended. One is to add func-
tions to the end of the existing suite. This allows the provider to use
common code for both versions. For more drastic changes it might be more
appropriate to clone the suite’s code base or start over from scratch. The old
version of the suite is supplied by the original code ensuring its integrity.
The new version is implemented in the new code, providing a fresh start.

There is no provision for specifying a range of versions. However, a suite
publisher can use the same pointer when declaring multiple versions of its
suite. For example, if the only change made to version 1 for version 2 is the
addition of functions at the end of the structure, then both suites can point
to it. Version 1 clients are unaware of the extra functions. Yet the capability
exists for versions of a suite to differ radically. The suite’s programmer may
take the opportunity with a new version to rearrange the suite’s functions
or add parameters to existing functions.

Finally, Sweet Pea makes no assumptions about which plug-ins implement
which versions of a suite. A different plug-in may implement each version.
Several plug-ins may implement different ranges of version numbers, and
the ranges need not be contiguous. For example, a plug-in may replace
another plug-in’s version with a newer implementation (internal version).

To reemphasize, Sweet Pea assumes no interpretation of a suite’s contents or
version number and assumes nothing about who implements it.

Adding and Allocating Suites
When a plug-in wants to make a function suite available it will use the
SPSuites API made available by PICA. As with any suite, the plug-in must first
acquire the SPSuites API using the SPBasic suite. To make a suite of functions
available the AddSuite() function is used.

SPSuiteRef AddSuite(SPSuiteListRef suiteList, SPPluginRef host,

char *name, long apiVersion, long internalVersion,

void *suiteProcs, SPErr *error);

To add a suite to PICA’s main suite list, pass NULL for the suiteList argument.
The name, apiVersion, and internalVersion are the suite identifiers as
already described. The suiteProcs argument is a pointer to the suite structure
filled with function pointers.

The structure with the fully prototyped functions is a part of the public
header, for instance:

#define kMyAppMenuSuite "My App Menu Suite"

#define kMyAppMenuSuiteVersion1

typedef struct SPMyAppMenuSuite {

SPAPI void (*AddMyMenu)(SPPluginRef self,

MyAppAddMenuData theMenuData, MyAppMenu *theMenu);

} MyAppMenuSuite;
The PICA API 83

The SPSuites Suite
The plug-in allocates memory for this structure and then assigns its members
valid function pointer. The memory for the structure should be an allocated
block in the host’s heap rather than a global since the plug-in may be
unloaded. As an example:

#define kMyAppMenuSuiteInternalVersion1

MyAppMenuSuite *myAppMenuSuite;

SPSuiteRef myAppMenuSuiteRef;

SPErr AddMyAppMenuSuite(void) {

SPErr *error;

sSPBlocks->AllocatedBlock(sizeof(MyAppMenuSuite), nil,

&myAppMenuSuite);

if (error) return error;

myAppMenuSuite->AddMyMenu = AddMyMenu;

error = sSPSuites->AddSuite(nil, nil, kMyAppMenuSuite,

kMyAppMenuSuiteVersion, kMyAppMenuSuiteInternalVersion,

&myAppMenuSuite, &myAppMenuSuiteRef);

}

AddMyMenu(SPPluginRef self, MyAppAddMenuData theMenuData,

MyAppMenu *theMenu) {

// application code to add menu goes here

}

Loading and Unloading Suites
Because a plug-in can be loaded and unloaded, it must reinitialize the func-
tion pointers in the structure when it receives the access caller with unload
and reload selectors.

Unloading the suite means stuffing the suite's procedure pointers with the
address of the Undefined() function in the SPBasic suite. This is a protective
measure against other plug-ins that may mistakenly use the suite after they
have released it. Reloading the suite means assigning the suite's procedure
pointers with the new addresses of their functions.

SPErr UnloadSuite(MySuite *mySuite, SPAccessMessage *message) {

mySuite->functionA = (void *) message->d.basic->Undefined;

mySuite->functionB = (void *) message->d.basic->Undefined;

}

SPErr ReloadSuite(MySuite *mySuite, SPAccessMessage *message) {

mySuite->functionA = functionA;

mySuite->functionB = functionB;

}

Plug-in Suites, Export Properties, and Loading Order
A plug-in requests most suites not knowing which component of the applica-
tion will provide them; the exception is the PICA core suites. If a plug-in
requests a suite provided by an unloaded plug-in, or even one that has yet
to be started, a potential conflict arises. It can do this safely however,
relying on PICA to ensure that that they are available when needed.
The PICA API 84

The SPSuites Suite
PICA uses the export properties of plug-in to determine the location of all
potential suite resources. When a suite is requested which is not yet in the
suite list, PICA will scan the export properties of all plug-in searching for the
name and version of the requested. All providers of the suites are sent a
startup message. PICA then checks the list of plug-ins for the latest available
version of the suite and returns this to the requesting plug-in.

When a requested suite is in the suite list, but provided by a plug-in that is
currently unloaded from memory, PICA will acquire teh providing plug-in
and send it a reload message. The providing plug-in reinitializes its suites’
function pointers at the reload message. When it has returned from the
reload call, the original requester will be sent the now valid suite.

An early version of the PICA technology found in Adobe Illustrator 6.0
handled the startup process in a different fashion. Before starting any plug-
ins, it would acquire all export properties and a property of type import
(’impt’). It would use these to build a dependency graph for the plug-ins and
use this graph to load the plug-ins. Implementation-wise, either method is
acceptable. PICA does not currently expect or recognize import properties
from plug-ins.
The PICA API 85

The SPSuites Suite
SPSuites Suite Functions

AllocateSuiteList() Create a new suite list

SPAPI SPErr AllocateSuiteList(struct SPStringPool *stringPool,

SPSuiteListRef *suiteList);

Allocates a new list of PICA suites, returned in suiteList. Suite names added
to the new suite list will be stored in the specified stringPool.

You can also use PICA’s main suite list, available through the SPRuntime
suite. See the discussion on PICA lists in the chapter, "The Core."

FreeSuiteList() Dispose of an suite list

SPAPI SPErr FreeSuiteList(SPSuiteListRef suiteList);

Disposes of the specified suite list and any entries in it. The suite list was
created with the AllocatedSuiteList() function.

See the discussion on PICA lists in the chapter, "The Core."

AddSuite() Add a new an suite to a list

SPAPI SPErr AddSuite(SPSuiteListRef suiteList, SPPluginRef host,

char *name, long apiVersion, long internalVersion,

void *suiteProcs, SPSuiteRef *suite);

This function adds a suite to the indicated suiteList. The plug-in providing
the suite is specified in host. The name, apiVersion, and internalVersion
identify the suite. A pointer to the structure with the suite pointers is passed
for suiteProcs. A reference to the stored suite is returned in suite.

The suite list reference can be NULL, which indicates that the suite is to be
added to PICA’s main list. If you are keeping a private list of suites for some
reason, this list reference could be passed instead. The identifers for the
suite are discussed in the chapter introduction. The name and api version
identifying constants should be placed in a public header file.

AcquireSuite() Acquire a suite of functions

SPAPI SPErr AcquireSuite(SPSuiteListRef suiteList, char *name,

long apiVersion, long internalVersion, void **suiteProcs
);

A pointer to the requested suite is returned in suiteProcs. This differs from
the SPBasic suite function of the same name in that the suiteList and
internalVersion of the suite can be specified. Acquiring a suite increments its
access count, preventing plug-in’s that provide suites from being unloaded.

Passing 0 for the internal version argument will acquire the latest internal
version available. Passing nil for the suite list argument will use PICA’s
internal list.
The PICA API 86

The SPSuites Suite
ReleaseSuite() Find an suite by name

SPAPI SPErr ReleaseSuite(SPSuiteListRef suiteList, char *name,

long apiVersion, long internalVersion);

Releasing a suite decrements its access count and makes its function pointers
invalid. If the access counts of all suites provided by a single plug-in are 0,
the plug-in may be unloaded.

FindSuite() Find an suite by name

SPAPI SPErr SPFindSuite(SPSuiteListRef suiteList, char *name,

long apiVersion, long internalVersion, SPSuiteRef *suite
);

Get a reference to the suite identified by name and version information. The
suiteList is search fro matching values and the pointer to the suite is
returned in suite.

See the discussion on PICA lists in the chapter, "The Core."

NewSuiteListIterator() Create an iterator to traverse a list

SPAPI SPErr NewSuiteListIterator(SPSuiteListRef suiteList,

SPSuiteListIteratorRef *iter);

Returns an iterator to access an suite list. The iterator is set to the first suite
in the list.

See the discussion on PICA lists in the chapter, "The Core."

NextSuite() Advance to the next entry in a list

SPAPI SPErr NextSuite(SPSuiteListIteratorRef iter, SPSuiteRef
*suite);

Advances the list iterator to the next suite in the list. When the last suite has
been reached, this function will return NULL.

See the discussion on PICA lists in the chapter, "The Core."

DeleteSuiteListIterator() Dispose of an suite list iterator

SPAPI SPErr DeleteSuiteListIterator(SPSuiteListIteratorRef iter);

When a list iterator is no longer needed it should be disposed.

See the discussion on PICA lists in the chapter, "The Core."
The PICA API 87

The SPSuites Suite
GetSuiteHost() Get the plug-in hosting a suite

SPAPI SPErr GetSuiteHost(SPSuiteRef suite,

struct SPPlugin **plugin);

Returns a reference to the plug-in that added the indicated suite in plugin.
You might want this reference to send the suite’s plug-in a message.

GetSuiteName() Get the identifier string of a suite

SPAPI SPErr GetSuiteName(SPSuiteRef suite, char **name);

Get a pointer to the name of the indicated suite, which is one of three
values used to identify it. The string should not be modified.

GetSuiteAPIVersion() Get the version of a suite

SPAPI SPErr GetSuiteAPIVersion(SPSuiteRef suite, long *version);

Get the api, or primary, version of the indicated suite, which is one of three
values used to identify it.

GetSuiteInternalVersion() Get the internal version of a suite

SPAPI SPErr GetSuiteInternalVersion(SPSuiteRef suite, long *version
);

Get the internal version, or sub-version, of the indicated suite, which is one
of three values used to identify it.

GetSuiteProcs() Get the a pointer to the
suite functions

SPAPI SPErr GetSuiteProcs(SPSuiteRef suite, void **suiteProcs);

Get a pointer to the block of memory containing the function of a suite. This
is normally done by acquiring the suite.

Getting the suite functions in this manner does not increase the access count
of the suite, nor will it cause the loading of the plug-in providing the suite.
Because of this the function pointers in the memory block may be invalid.
Before using them, check the suite access count with GetSuiteAcquireCount(
).
The PICA API 88

The SPSuites Suite
GetSuiteAcquireCount() Get the mumber of times a
suite has been acquired

SPAPI SPErr GetSuiteAcquireCount(SPSuiteRef suite, long *count);

Get the number of times a suite has been acquired. While this count is posi-
tive, the suite is valid. If it is zero, its function pointers may be invalid.
The PICA API 89

	Chapter 0 - About This Document
	Viewing and Printing This Document
	Conventions
	Accessing the Suite
	Supporting Documents
	There are five companion documents to this referen...

	Chapter 1 - Intro
	About the PICA Plug-in Manager
	The Plug-in Model
	What is a Suite?
	Interface Files

	Some Design Goals
	Common Plug-in Interface

	Chapter 2 - Plug-ins
	What Defines a Plug-in?
	PiPLs
	Plug-in Loading Order

	The Plug-in Entry Point
	Message Actions: Callers and Selectors
	Handling Callers and Selectors
	Message Data

	Using Suites and Callback Functions
	Calling a Suite Function
	A Complete Example

	Platform Considerations

	Chapter 3- PiPLs
	The Plug-in Propery List Resource
	The PiPL Structure
	Properties
	Platform Dependencies

	Types
	General properties
	Code Descriptor Properties
	Export Properties
	PIIEListsDesc

	Dynamically Declared Properties
	Working with PiPLs

	Chapter 4 - The Core
	Internal Data Structures
	Suites and Data Structure Interfaces
	List Management
	Error codes

	Chapter 5 - The SPAccess Suite
	About the SPAccess Suite
	Accessing the Suite
	Calling Other Plug-ins
	SPAccess Information

	SPAccess Suite Functions

	Chapter 6 - The SPAdapters Suite
	About the SPAdapters Suite
	Accessing the Suite

	Plug-in Adapters
	Adapter Messages
	Message Data

	SPAdapters Suite Functions

	Chapter 7 - The SPBasic Suite
	About the SPBasic Suite
	Accessing the Suite
	What Is a Suite?
	Acquiring and Releasing Suites
	Using a Suite Function

	SPBasic Suite Functions

	Chapter 8 - The SPBlocks Suite
	About the SPBlocks Suite
	Accessing the Suite

	SPBlocks Suite Functions

	Chapter 9 - The SPCaches Suite
	About the SPCaches Suite
	Accessing the Suite

	SPAdapters Suite Functions

	Chapter 10 - The SPFiles Suite
	About the SPFiles Suite
	Accessing the Suite
	Platform File Specifications

	SPFiles Suite Functions

	Chapter 11 - The SPInterface Suite
	About the SPInterface Suite
	Accessing the Suite
	Calling Other Plug-ins
	Calling Non-PICA Plug-ins

	SPInterface Suite Functions

	Chapter 12- The SPPlugins Suite
	About the SPPlugins Suite
	Accessing the Suite
	Plug-in States
	Host Plug-ins

	SPPlugins Suite Functions

	Chapter 13 - The SPProperties Suite
	About the SPProperties Suite
	Accessing the Suite
	SPProperties

	SPProperties Suite Functions

	Chapter 14 - The SPRuntime Suite
	About the SPRuntime Suite
	Accessing the Suite

	SPRuntime Suite Functions

	Chapter 15 - The SPStrings Suite
	About the SPStrings Suite
	Accessing the Suite
	String Pools

	SPStrings Suite Functions

	Chapter 16 - The SPSuites Suite
	About the SPSuites Suite
	Accessing the Suite
	Plug-in Suites
	Suite Versions
	Suite Interface Files
	Supplying Multiple Suite Versions
	Adding and Allocating Suites
	Loading and Unloading Suites
	Plug-in Suites, Export Properties, and Loading Ord...

	SPSuites Suite Functions

